SSTNet: Sliced Spatio-Temporal Network With Cross-Slice ConvLSTM for Moving Infrared Dim-Small Target Detection

被引:33
作者
Chen, Shengjia [1 ]
Ji, Luping [1 ]
Zhu, Jiewen [1 ]
Ye, Mao [1 ]
Yao, Xiaoyong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Jinggangshan Univ, Sch Mech & Elect Engn, Jian 343009, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Feature extraction; Object detection; Videos; Tensors; Neck; Visualization; Training; Infrared dim-small target detection; motion-coordination loss (MCL); motion-coupling neck; sliced spatio-temporal network (SSTNet); LOCAL CONTRAST METHOD; MODEL;
D O I
10.1109/TGRS.2024.3350024
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Infrared dim-small target detection, as an important branch of object detection, has been attracting research attention in recent decades. Its challenges mainly lie in the small target sizes and dim contrast to background images. Recent research schemes on it mainly focus on improving the feature representation of spatio-temporal domains only in single-slice temporal scope. More cross-slice motion, i.e., past and future, is seldom considered to enhance target features. To use cross-slice motion context, this article proposes a sliced spatio-temporal network (SSTNet) with cross-slice enhancement for moving infrared dim-small target detection. In our scheme, a new cross-slice ConvLSTM node is designed to capture spatio-temporal motion features from both inner slice and inter-slices. Moreover, to improve infrared small target motion feature learning, we extend conventional loss function by adopting a new motion-coordination loss (MCL) term. On these, we propose a motion-coupling neck to assist feature extractor in facilitating the capturing and utilization of motion features from multiframes. To our best knowledge, our work is the first one to explore the cross-slice spatio-temporal motion modeling for infrared dim-small targets. Experiments verify that our SSTNet could refresh most state-of-the-art metrics on two public benchmarks (DAUB and IRDST). Our source codes are available at https://github.com/UESTC-nnLab/SSTNet.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 60 条
[11]   Max-Mean and Max-Median filters for detection of small-targets [J].
Deshpande, SD ;
Er, MH ;
Ronda, V ;
Chan, P .
SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 :74-83
[12]   A Spatial-Temporal Feature-Based Detection Framework for Infrared Dim Small Target [J].
Du, Jinming ;
Lu, Huanzhang ;
Zhang, Luping ;
Hu, Moufa ;
Chen, Sheng ;
Deng, Yingjie ;
Shen, Xinglin ;
Zhang, Yu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[13]   CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor [J].
Du, Jinming ;
Lu, Huanzhang ;
Hu, Moufa ;
Zhang, Luping ;
Shen, Xinglin .
IET IMAGE PROCESSING, 2021, 15 (01) :1-15
[14]   Infrared Moving Small-Target Detection Using Spatial-Temporal Local Difference Measure [J].
Du, Peng ;
Hamdulla, Askar .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) :1817-1821
[15]   The particle problem in the general theory of relativity [J].
Einstein, A ;
Rosen, N .
PHYSICAL REVIEW, 1935, 48 (01) :73-77
[16]  
Einstein A., 1922, The Meaning of Relativity, P54, DOI [10.1007/978-94-011-6022-3_3, DOI 10.1007/978-94-011-6022-3_3]
[17]   Infrared Patch-Image Model for Small Target Detection in a Single Image [J].
Gao, Chenqiang ;
Meng, Deyu ;
Yang, Yi ;
Wang, Yongtao ;
Zhou, Xiaofang ;
Hauptmann, Alexander G. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) :4996-5009
[18]  
Ge Z, 2021, Arxiv, DOI arXiv:2107.08430
[19]  
Gong T, 2021, AAAI CONF ARTIF INTE, V35, P1442
[20]   A Local Contrast Method for Infrared Small-Target Detection Utilizing a Tri-Layer Window [J].
Han, Jinhui ;
Moradi, Saed ;
Faramarzi, Iman ;
Liu, Chengyin ;
Zhang, Honghui ;
Zhao, Qian .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) :1822-1826