Piperazine-loaded electrospun fiber mats with MIL-101(Cr, Mg) metal organic framework for CO2 capture

被引:13
作者
Gaikwad, Ranjit [1 ]
Gaikwad, Sanjit [1 ]
Han, Sangil [1 ]
机构
[1] Changwon Natl Univ, Dept Chem Engn, Changwon Si 51140, Gyeongsangnam D, South Korea
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2023年 / 11卷 / 06期
基金
新加坡国家研究基金会;
关键词
Metal organic frameworks; Electrospun mat; Piperazine; CO; 2; capture; Acid gases; ADSORPTION CAPACITY; MICROWAVE METHOD; ADSORBENT; POLYETHYLENEIMINE; PERFORMANCE; COMPOSITES; SEPARATION; STABILITY; REMOVAL; UTSA-16;
D O I
10.1016/j.jece.2023.111592
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
MIL-101(Cr, Mg) is a promising metal organic framework (MOF) considering its moisture, thermal, and chemical stabilities. Piperazine-loaded polyacrylonitrile (PAN)/MIL-101(Cr, Mg) fiber mats were fabricated with different percentages of piperazine (10%, 20%, and 30%) in the polymer solution using an electrospinning technique. The PAN/MIL-101 fiber mats exhibited improved adsorption capacity and selectivity when combined with piperazine because of the improved affinity of CO2 molecules for the basic amine sites of piperazine. PAN/MIL-101-20% was selected as an optimum fiber mat owing to its high CO2 adsorption capacity (2.48 mmol/g) and selectivity (38), which are 2.4 and 2.9 times higher than those of the fiber mat without piperazine, respectively. The stability of the PAN/MOF fiber mat in humid air and NO2 gas and the results of ten adsorption-desorption experiments showed consistent CO2 capture performance.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation [J].
Akinola, Toluleke Emmanuel ;
Oko, Eni ;
Wang, Meihong .
FUEL, 2019, 236 :135-146
[2]   Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance [J].
Andres, Miguel A. ;
Benzaqui, M. ;
Serre, C. ;
Steunou, N. ;
Gascon, I. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 519 :88-96
[3]   Towards industrial use of metal-organic framework: Impact of shaping on the MOF properties [J].
Bazer-Bachi, D. ;
Assie, L. ;
Lecocq, V. ;
Harbuzaru, B. ;
Falk, V. .
POWDER TECHNOLOGY, 2014, 255 :52-59
[4]   Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture [J].
Choi, Chungjung ;
Kadam, Rahul L. ;
Gaikwad, Sanjit ;
Hwang, Kyu-Suk ;
Han, Sangil .
MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 296
[5]   Luminescent Functional Metal-Organic Frameworks [J].
Cui, Yuanjing ;
Yue, Yanfeng ;
Qian, Guodong ;
Chen, Banglin .
CHEMICAL REVIEWS, 2012, 112 (02) :1126-1162
[6]   Large-Pore Apertures in a Series of Metal-Organic Frameworks [J].
Deng, Hexiang ;
Grunder, Sergio ;
Cordova, Kyle E. ;
Valente, Cory ;
Furukawa, Hiroyasu ;
Hmadeh, Mohamad ;
Gandara, Felipe ;
Whalley, Adam C. ;
Liu, Zheng ;
Asahina, Shunsuke ;
Kazumori, Hiroyoshi ;
O'Keeffe, Michael ;
Terasaki, Osamu ;
Stoddart, J. Fraser ;
Yaghi, Omar M. .
SCIENCE, 2012, 336 (6084) :1018-1023
[7]   Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution [J].
Efome, Johnson E. ;
Rana, Dipak ;
Matsuura, Takeshi ;
Lan, Christopher Q. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) :18619-18629
[8]   Metal-Organic Frameworks: Opportunities for Catalysis [J].
Farrusseng, David ;
Aguado, Sonia ;
Pinel, Catherine .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (41) :7502-7513
[9]   Functionalized Covalent Triazine Frameworks for Effective CO2 and SO2 Removal [J].
Fu, Yu ;
Wang, Zhiqiang ;
Li, Sizhe ;
He, Xunming ;
Pan, Chunyue ;
Yan, Jun ;
Yu, Guipeng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) :36002-36009
[10]   Bimetallic UTSA-16 (Zn, X; X = Mg, Mn, Cu) metal organic framework developed by a microwave method with improved CO2 capture performances [J].
Gaikwad, Ranjit ;
Gaikwad, Sanjit ;
Han, Sangil .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 111 :346-355