A boundary value problem of heat transfer within DBD-based plasma jet setups

被引:0
作者
Vafeas, P. [1 ]
Skarlatos, A. [2 ]
Papadopoulos, P. K. [3 ]
Svarnas, P. [4 ]
Sarmas, N. [3 ]
机构
[1] Univ Patras, Dept Chem Engn, Patras 26504, Greece
[2] Univ Paris Saclay, CEA, List, F-91120 Palaiseau, France
[3] Univ Patras, Dept Mech Engn & Aeronaut, Patras 26504, Greece
[4] Univ Patras, Dept Elect & Comp Engn, High Voltage Lab, Patras 26504, Greece
关键词
dielectric barrier discharge; cold plasma jet systems; thermal non-homogeneous; boundary value problem; analytical methodology; finite integration technique; ATMOSPHERIC-PRESSURE; GAS TEMPERATURE;
D O I
10.3934/mbe.2023815
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We claim an analytical solution for the thermal boundary value problem that arises in DBD-based plasma jet systems as a preliminary and consistent approach to a simplified geometry. This approach involves the outline of a coaxial plasma jet reactor and the consideration of the heat transfer to the reactor solids, namely, the dielectric barrier and the grounded electrode. The non-homogeneous initial and boundary value thermal problem is solved analytically, while a simple cut-off technique is applied to deal with the appearance of infinite series relationships, being the outcome of merging dual expressions. The results are also implemented numerically, supporting the analytical solution, while a Finite Integration Technique (FIT) is used for the validation. Both the analytical and numerical data reveal the temperature pattern at the cross-section of the solids in perfect agreement. This analytical approach could be of importance for the optimization of plasma jet systems employed in tailored applications where temperature-sensitive materials are involved, like in plasma biomedicine.
引用
收藏
页码:18345 / 18367
页数:23
相关论文
共 30 条
[1]   Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet [J].
Chang, Zheng-Shi ;
Zhang, Guan-Jun ;
Shao, Xian-Jun ;
Zhang, Zeng-Hui .
PHYSICS OF PLASMAS, 2012, 19 (07)
[2]   Use of thermocouples and argon line broadening for gas temperature measurement in a radio frequency atmospheric microplasma jet [J].
Doyle, S. J. ;
Xu, K. G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (02)
[3]   Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis [J].
Gazeli, K. ;
Svarnas, P. ;
Vafeas, P. ;
Papadopoulos, P. K. ;
Gkelios, A. ;
Clement, F. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (10)
[4]  
Hobson E.W., 1965, THEORY SPHERICAL ELL
[5]   Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets [J].
Hofmann, S. ;
van Gessel, A. F. H. ;
Verreycken, T. ;
Bruggeman, P. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (06)
[6]   Calculation of the gas temperature in a throughflow atmospheric pressure dielectric barrier discharge torch by spectral line shape analysis [J].
Ionascut-Nedelcescu, A. ;
Carlone, C. ;
Kogelschatz, U. ;
Gravelle, D. V. ;
Boulos, M. I. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
[7]   Optical measurements of gas temperatures in atmospheric pressure RF cold plasmas [J].
Kim, JH ;
Kim, YH ;
Choi, YH ;
Choe, W ;
Choi, JJ ;
Hwang, YS .
SURFACE & COATINGS TECHNOLOGY, 2003, 171 (1-3) :211-215
[8]   Numerical simulation of the interaction between helium jet flow and an atmospheric-pressure "plasma jet" [J].
Logothetis, D. K. ;
Papadopoulos, P. K. ;
Svarnas, P. ;
Vafeas, P. .
COMPUTERS & FLUIDS, 2016, 140 :11-18
[9]  
Marklein R., 1999, Review of Radio Science, P201
[10]  
Moon P, 1988, Field Theory Handbook, V2, DOI [DOI 10.1007/978-3-642-83243-7, 10.1007/978-3-642-83243-7 0097.39403]