Knowledge transduction for cross-domain few-shot learning

被引:29
作者
Li, Pengfang [1 ,2 ,3 ,4 ]
Liu, Fang [1 ,2 ,3 ,4 ]
Jiao, Licheng [1 ,2 ,3 ,4 ]
Li, Shuo [1 ,2 ,3 ,4 ]
Li, Lingling [1 ,2 ,3 ,4 ]
Liu, Xu [1 ,2 ,3 ,4 ]
Huang, Xinyan [1 ,2 ,3 ,4 ]
机构
[1] Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian, Peoples R China
[2] Int Res Ctr Intelligent Percept & Computat, Xian, Peoples R China
[3] Joint Int Res Lab Intelligent Percept & Computat, Xian, Peoples R China
[4] Xidian Univ, Sch Artifinal Intelligent, 2 Taibai South Rd, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; Domain adaptation; Feature adaptation; Feature transduction; Feed-forward attention; Deep sparse representation;
D O I
10.1016/j.patcog.2023.109652
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-Domain Few-Shot Learning (CDFSL) aims to classify new categories from new domains with few samples. It confronts a greater domain shift than Few-Shot Learning (FSL). Based on the transfer learn-ing framework, we propose a Knowledge Transduction method (KT) to alleviate domain shift and achieve few-shot recognition. First, a feature adaptation module based on feed-forward attention is constructed to learn domain-adapted features. The feature adaptation module weakens domain shift by transducing knowledge from an auxiliary dataset to the new dataset. Second, a feature transduction module based on deep sparse representation is developed to gather class semantics from limited support images. The feature transduction module transduces knowledge from support images to query images for few-shot recognition. In addition, a stochastic image augmentation method is proposed for FSL to train a more generalized model through consistency representation learning. Our method achieves competitive accu-racy on four CDFSL datasets and four FSL datasets compared to state-of-the-art methods. The source code is available at https://github.com/XDUpfLi/KT .(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 53 条
[1]  
Adler T, 2021, Arxiv, DOI arXiv:2010.06498
[2]   LaSO: Label-Set Operations networks for multi-label few-shot learning [J].
Alfassy, Amit ;
Karlinsky, Leonid ;
Aides, Amit ;
Shtok, Joseph ;
Harary, Sivan ;
Feris, Rogerio ;
Giryes, Raja ;
Bronstein, Alex M. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :6541-6550
[3]  
Bertinetto Luca, 2019, INT C LEARN REPR
[4]   Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and Aligned Representations [J].
Chen, Wentao ;
Zhang, Zhang ;
Wang, Wei ;
Wang, Liang ;
Wang, Zilei ;
Tan, Tieniu .
COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 :383-399
[5]   Exploring Simple Siamese Representation Learning [J].
Chen, Xinlei ;
He, Kaiming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15745-15753
[6]   Augmentative contrastive learning for one-shot object detection [J].
Du, Yaoyang ;
Liu, Fang ;
Jiao, Licheng ;
Hao, Zehua ;
Li, Shuo ;
Liu, Xu ;
Liu, Jing .
NEUROCOMPUTING, 2022, 513 :13-24
[7]   Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation [J].
Du, Zhekai ;
Li, Jingjing ;
Su, Hongzu ;
Zhu, Lei ;
Lu, Ke .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :3936-3945
[8]   Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J].
Ghifary, Muhammad ;
Kleijn, W. Bastiaan ;
Zhang, Mengjie ;
Balduzzi, David ;
Li, Wen .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :597-613
[9]   Boosting Few-Shot Visual Learning with Self-Supervision [J].
Gidaris, Spyros ;
Bursuc, Andrei ;
Komodakis, Nikos ;
Perez, Patrick ;
Cord, Matthieu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8058-8067
[10]   A Broader Study of Cross-Domain Few-Shot Learning [J].
Guo, Yunhui ;
Codella, Noel C. ;
Karlinsky, Leonid ;
Codella, James V. ;
Smith, John R. ;
Saenko, Kate ;
Rosing, Tajana ;
Feris, Rogerio .
COMPUTER VISION - ECCV 2020, PT XXVII, 2020, 12372 :124-141