Ultrafast reversible self-assembly of living tangled matter

被引:28
|
作者
Patil, Vishal P. [1 ]
Tuazon, Harry [2 ]
Kaufman, Emily [2 ]
Chakrabortty, Tuhin [2 ]
Qin, David [3 ]
Dunkel, Jorn [4 ]
Bhamla, M. Saad [2 ]
机构
[1] Stanford Univ, Dept Bioengn, 475 Via Ortega, Stanford, CA 94305 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30318 USA
[3] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[4] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
MECHANICS;
D O I
10.1126/science.ade7759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tangled active filaments are ubiquitous in nature, from chromosomal DNA and cilia carpets to root networks and worm collectives. How activity and elasticity facilitate collective topological transformations in living tangled matter is not well understood. We studied California blackworms (Lumbriculus variegatus), which slowly form tangles in minutes but can untangle in milliseconds. Combining ultrasound imaging, theoretical analysis, and simulations, we developed and validated a mechanistic model that explains how the kinematics of individual active filaments determines their emergent collective topological dynamics. The model reveals that resonantly alternating helical waves enable both tangle formation and ultrafast untangling. By identifying generic dynamical principles of topological self-transformations, our results can provide guidance for designing classes of topologically tunable active materials.
引用
收藏
页码:392 / +
页数:7
相关论文
共 50 条
  • [1] Ultrafast reversible self-assembly of living tangled matter
    Patil, Vishal
    Tuazon, Harry
    Kaufman, Emily
    Chakrabortty, Tuhin
    Qin, David
    Dunkel, Jorn
    Bhamla, Saad
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2024, 64 : S393 - S393
  • [2] SELF-ASSEMBLY IN LIVING NEMATICS
    BLADON, P
    GRIFFIN, AC
    MACROMOLECULES, 1993, 26 (24) : 6604 - 6610
  • [3] Reversible self-assembly of superstructured networks
    Freeman, Ronit
    Han, Ming
    Alvarez, Zaida
    Lewis, Jacob A.
    Wester, James R.
    Stephanopoulos, Nicholas
    McClendon, Mark T.
    Lynsky, Cheyenne
    Godbe, Jacqueline M.
    Sangji, Hussain
    Luijten, Erik
    Stupp, Samuel I.
    SCIENCE, 2018, 362 (6416) : 808 - +
  • [4] COLLOIDAL SELF-ASSEMBLY Reversible actuation
    Furst, Eric M.
    NATURE MATERIALS, 2015, 14 (01) : 19 - 20
  • [5] Stochastic Analysis of Reversible Self-Assembly
    Majumder, Urmi
    Sahu, Sudheer
    Reif, John H.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (07) : 1289 - 1305
  • [6] Non-equilibrium self-assembly for living matter-like properties
    Singh, Abhishek
    Parvin, Payel
    Saha, Bapan
    Das, Dibyendu
    NATURE REVIEWS CHEMISTRY, 2024, 8 (10) : 723 - 740
  • [7] Supramolecular Self-Assembly in Living Cells
    Dergham, Mohamed
    Lin, Shanmeng
    Geng, Jin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (18)
  • [8] Self-assembly of biomolecular soft matter
    Stupp, Samuel I.
    Zha, R. Helen
    Palmer, Liam C.
    Cui, Honggang
    Bitton, Ronit
    FARADAY DISCUSSIONS, 2013, 166 : 9 - 30
  • [9] Nanodisc self-assembly is thermodynamically reversible and controllable
    Camp, Tyler
    Sligar, Stephen G.
    SOFT MATTER, 2020, 16 (24) : 5615 - 5623
  • [10] Spatially controlled reversible colloidal self-assembly
    Fernandes, Gregory E.
    Beltran-Villegas, Daniel J.
    Bevan, Michael A.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (13):