共 62 条
A Stacking Ensemble Model of Various Machine Learning Models for Daily Runoff Forecasting
被引:50
作者:

Lu, Mingshen
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China

Hou, Qinyao
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China

Qin, Shujing
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China

Zhou, Lihao
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China

Hua, Dong
论文数: 0 引用数: 0
h-index: 0
机构:
Minist Water Resources, Informat Ctr, Beijing 100053, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China

Wang, Xiaoxia
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
Dept Water Resources Hainan Prov, Haikou 570100, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China

Cheng, Lei
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
机构:
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn Sc, Wuhan 430072, Peoples R China
[2] Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
[3] Minist Water Resources, Informat Ctr, Beijing 100053, Peoples R China
[4] Dept Water Resources Hainan Prov, Haikou 570100, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
daily runoff forecasting;
machine learning;
stacking model;
attentional mechanism;
ARTIFICIAL-INTELLIGENCE;
PREDICTION;
IDENTIFICATION;
PERFORMANCE;
REGRESSION;
SELECTION;
BASIN;
RIVER;
D O I:
10.3390/w15071265
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Improving the accuracy and stability of daily runoff prediction is crucial for effective water resource management and flood control. This study proposed a novel stacking ensemble learning model based on attention mechanism for the daily runoff prediction. The proposed model has a two-layer structure with the base model and the meta model. Three machine learning models, namely random forest (RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGB) are used as the base models. The attention mechanism is used as the meta model to integrate the output of the base model to obtain predictions. The proposed model is applied to predict the daily inflow to Fuchun River Reservoir in the Qiantang River basin. The results show that the proposed model outperforms the base models and other ensemble models in terms of prediction accuracy. Compared with the XGB and weighted averaging ensemble (WAE) models, the proposed model has a 10.22% and 8.54% increase in Nash-Sutcliffe efficiency (NSE), an 18.52% and 16.38% reduction in root mean square error (RMSE), a 28.17% and 18.66% reduction in mean absolute error (MAE), and a 4.54% and 4.19% increase in correlation coefficient (r). The proposed model significantly outperforms the base model and simple stacking model indicated by both the Friedman test and the Nemenyi test. Thus, the proposed model can produce reasonable and accurate prediction of the reservoir inflow, which is of great strategic significance and application value in formulating the rational allocation and optimal operation of water resources and improving the breadth and depth of hydrological forecasting integrated services.
引用
收藏
页数:19
相关论文
共 62 条
[51]
The very short-term rainfall forecasting for a mountainous watershed by means of an ensemble numerical weather prediction system in Taiwan
[J].
Wu, Ming-Chang
;
Lin, Gwo-Fong
.
JOURNAL OF HYDROLOGY,
2017, 546
:60-70

Wu, Ming-Chang
论文数: 0 引用数: 0
h-index: 0
机构:
Taiwan Typhoon & Flood Res Inst, Natl Appl Res Labs, Taipei 10093, Taiwan Taiwan Typhoon & Flood Res Inst, Natl Appl Res Labs, Taipei 10093, Taiwan

Lin, Gwo-Fong
论文数: 0 引用数: 0
h-index: 0
机构:
Taiwan Typhoon & Flood Res Inst, Natl Appl Res Labs, Taipei 10093, Taiwan
Natl Taiwan Univ, Dept Civil Engn, Taipei 10617, Taiwan Taiwan Typhoon & Flood Res Inst, Natl Appl Res Labs, Taipei 10093, Taiwan
[52]
A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning
[J].
Xiang, Zhongrun
;
Yan, Jun
;
Demir, Ibrahim
.
WATER RESOURCES RESEARCH,
2020, 56 (01)

Xiang, Zhongrun
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA

Yan, Jun
论文数: 0 引用数: 0
h-index: 0
机构:
DHI China, Shanghai, Peoples R China Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA

Demir, Ibrahim
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA
[53]
Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin, China
[J].
Xie, Tuo
;
Zhang, Gang
;
Hou, Jinwang
;
Xie, Jiancang
;
Lv, Meng
;
Liu, Fuchao
.
JOURNAL OF HYDROLOGY,
2019, 577

Xie, Tuo
论文数: 0 引用数: 0
h-index: 0
机构:
Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China

Zhang, Gang
论文数: 0 引用数: 0
h-index: 0
机构:
Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China
Xian Univ Technol, Res Ctr Ecohydraul & Sustainable Dev, New Style Think Tank Shaanxi Univ, Xian 710048, Shaanxi, Peoples R China Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China

Hou, Jinwang
论文数: 0 引用数: 0
h-index: 0
机构:
Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China

Xie, Jiancang
论文数: 0 引用数: 0
h-index: 0
机构:
Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China
Xian Univ Technol, Res Ctr Ecohydraul & Sustainable Dev, New Style Think Tank Shaanxi Univ, Xian 710048, Shaanxi, Peoples R China Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China

Lv, Meng
论文数: 0 引用数: 0
h-index: 0
机构:
Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China

Liu, Fuchao
论文数: 0 引用数: 0
h-index: 0
机构:
State Grid Gansu Elect Power Co, Gansu Elect Power Res Inst, Lanzhou 730050, Gansu, Peoples R China Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg China, Xian 710048, Shaanxi, Peoples R China
[54]
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
[J].
Yang, Jie
;
Huang, Xin
.
EARTH SYSTEM SCIENCE DATA,
2021, 13 (08)
:3907-3925

Yang, Jie
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China

Huang, Xin
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[55]
Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information
[J].
Yang, Tiantian
;
Asanjan, Ata Akbari
;
Welles, Edwin
;
Gao, Xiaogang
;
Sorooshian, Soroosh
;
Liu, Xiaomang
.
WATER RESOURCES RESEARCH,
2017, 53 (04)
:2786-2812

Yang, Tiantian
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA
Deltares USA Inc, Silver Spring, MD 20910 USA Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA

Asanjan, Ata Akbari
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA

Welles, Edwin
论文数: 0 引用数: 0
h-index: 0
机构:
Deltares USA Inc, Silver Spring, MD 20910 USA Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA

Gao, Xiaogang
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA

Sorooshian, Soroosh
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA

Liu, Xiaomang
论文数: 0 引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA
[56]
Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq
[J].
Yaseen, Zaher Mundher
;
Jaafar, Othman
;
Deo, Ravinesh C.
;
Kisi, Ozgur
;
Adamowski, Jan
;
Quilty, John
;
El-Shafie, Ahmed
.
JOURNAL OF HYDROLOGY,
2016, 542
:603-614

Yaseen, Zaher Mundher
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia

Jaafar, Othman
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia

Deo, Ravinesh C.
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Southern Queensland, Sch Agr Computat & Environm Sci, Inst Agr & Environm IAg&E, Springfield, Qld 4300, Australia Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia

Kisi, Ozgur
论文数: 0 引用数: 0
h-index: 0
机构:
Int Black Sea Univ, Ctr Interdisciplinary Res, Tbilisi, Georgia Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia

论文数: 引用数:
h-index:
机构:

Quilty, John
论文数: 0 引用数: 0
h-index: 0
机构:
McGill Univ, Fac Agr & Environm Sci, Dept Bioresource Engn, Quebec City, PQ H9X 3V9, Canada Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia

El-Shafie, Ahmed
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur 50603, Malaysia Univ Kebangsaan Malaysia, Civil & Struct Engn Dept, Fac Engn & Built Environm, Ukm Bangi 43600, Selangor Darul, Malaysia
[57]
Monthly runoff forecasting based on LSTM-ALO model
[J].
Yuan, Xiaohui
;
Chen, Chen
;
Lei, Xiaohui
;
Yuan, Yanbin
;
Adnan, Rana Muhammad
.
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,
2018, 32 (08)
:2199-2212

Yuan, Xiaohui
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China
China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Peoples R China Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China

Chen, Chen
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China

Lei, Xiaohui
论文数: 0 引用数: 0
h-index: 0
机构:
China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China

Yuan, Yanbin
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Sch Resource & Environm Engn, Wuhan 430070, Hubei, Peoples R China Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China

Adnan, Rana Muhammad
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China
[58]
Effect of GCM credibility on water resource system robustness under climate change based on decision scaling
[J].
Zhang, Ruikang
;
Cheng, Lei
;
Liu, Pan
;
Huang, Kangdi
;
Gong, Yu
;
Qin, Shujing
;
Liu, Dedi
.
ADVANCES IN WATER RESOURCES,
2021, 158

Zhang, Ruikang
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China

Cheng, Lei
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China

Liu, Pan
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China

Huang, Kangdi
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China

Gong, Yu
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China

Qin, Shujing
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China

Liu, Dedi
论文数: 0 引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
Hubei Prov Collaborat Innovat Ctr Water Resources, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Prov Key Lab Water Syst Sci Sponge City Con, Wuhan, Hubei, Peoples R China Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[59]
Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
[J].
Zhang, Wengang
;
Wu, Chongzhi
;
Zhong, Haiyi
;
Li, Yongqin
;
Wang, Lin
.
GEOSCIENCE FRONTIERS,
2021, 12 (01)
:469-477

Zhang, Wengang
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China

Wu, Chongzhi
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China

Zhong, Haiyi
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China

Li, Yongqin
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China

Wang, Lin
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[60]
Uncertainties in SWAT extreme flow simulation under climate change
[J].
Zhang, Xujie
;
Xu, Yue-Ping
;
Fu, Guangtao
.
JOURNAL OF HYDROLOGY,
2014, 515
:205-222

Zhang, Xujie
论文数: 0 引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Hydrol & Water Resources, Hangzhou 310058, Zhejiang, Peoples R China Zhejiang Univ, Inst Hydrol & Water Resources, Hangzhou 310058, Zhejiang, Peoples R China

Xu, Yue-Ping
论文数: 0 引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Hydrol & Water Resources, Hangzhou 310058, Zhejiang, Peoples R China Zhejiang Univ, Inst Hydrol & Water Resources, Hangzhou 310058, Zhejiang, Peoples R China

Fu, Guangtao
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Exeter, Coll Engn, Ctr Water Syst Math & Phys Sci, Exeter EX4 4QF, Devon, England Zhejiang Univ, Inst Hydrol & Water Resources, Hangzhou 310058, Zhejiang, Peoples R China