Atomic-scale interpretation of the quantum oscillations in cuprate superconductors

被引:0
|
作者
Lee, K. S. [1 ]
Kim, J-J [1 ]
Joo, S. H. [1 ]
Park, M. S. [1 ]
Yoo, J. H. [1 ]
Gu, Genda [2 ]
Lee, Jinho [1 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA
基金
新加坡国家研究基金会;
关键词
quantum oscillation; cuprate; STM; high-Tc; superconductor; high magnetic field; magnetic vortices; DENSITY-WAVE ORDER; QUASI-PARTICLE STATES; FERMI-SURFACE; CHARGE ORDER; PSEUDOGAP;
D O I
10.1088/1361-648X/acc379
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Cuprate superconductors display unusual features in both k space and real space as the superconductivity is suppressed-a broken Fermi surface, charge density wave, and pseudogap. Contrarily, recent transport measurements on cuprates under high magnetic fields report quantum oscillations (QOs), which imply rather a usual Fermi liquid behavior. To settle the disagreement, we investigated Bi2Sr2CaCu2O8+delta under a magnetic field in an atomic scale. A particle-hole (p-h) asymmetrically dispersing density of states (DOSs) modulation was found at the vortices on a slightly underdoped sample, while on a highly underdoped sample, no trace of the vortex was found even at 13 T. However, a similar p-h asymmetric DOS modulation persisted in almost an entire field of view. From this observation, we infer an alternative explanation of the QO results by providing a unifying picture where the aforementioned seemingly conflicting evidence from angle-resolved photoemission spectroscopy, spectroscopic imaging scanning tunneling microscopy, and magneto-transport measurements can be understood solely in terms of the DOS modulations.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Universal quantum oscillations in the underdoped cuprate superconductors
    Barisic, Neven
    Badoux, Sven
    Chan, Mun K.
    Dorow, Chelsey
    Tabis, Wojciech
    Vignolle, Baptiste
    Yu, Guichuan
    Beard, Jerome
    Zhao, Xudong
    Proust, Cyril
    Greven, Martin
    NATURE PHYSICS, 2013, 9 (12) : 761 - 764
  • [2] Universal quantum oscillations in the underdoped cuprate superconductors
    Neven Barišić
    Sven Badoux
    Mun K. Chan
    Chelsey Dorow
    Wojciech Tabis
    Baptiste Vignolle
    Guichuan Yu
    Jérôme Béard
    Xudong Zhao
    Cyril Proust
    Martin Greven
    Nature Physics, 2013, 9 : 761 - 764
  • [3] Calculations of quantum oscillations in cuprate superconductors considering the pseudogap
    de Mello, E. V. L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (38)
  • [4] Theory of quantum magneto-oscillations in underdoped cuprate superconductors
    Alexandrov, A. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (19)
  • [5] Atomic-Scale Visualization of the Cuprate Pair Density Wave State
    Du, Zengyi
    Li, Hui
    Fujita, Kazuhiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (11)
  • [6] Two-dimensional superconductors with atomic-scale thickness
    Uchihashi, Takashi
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2017, 30 (01):
  • [7] Visualization of atomic-scale phenomena in superconductors: Application to FeSe
    Choubey, Peayush
    Berlijn, T.
    Kreisel, A.
    Cao, C.
    Hirschfeld, P. J.
    PHYSICAL REVIEW B, 2014, 90 (13):
  • [8] Atomic-scale imaging of interfacial polarization in cuprate-titanate heterostructures
    Mi, Shao-Bo
    Yao, Tian
    Cheng, Shao-Dong
    Faley, Micheal, I
    Poppe, Ulrich
    Lu, Lu
    Wang, Dawei
    Jia, Chun-Lin
    APPLIED PHYSICS LETTERS, 2020, 116 (25)
  • [9] Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors
    Vignolle, Baptiste
    Vignolles, David
    LeBoeuf, David
    Lepault, Stephane
    Ramshaw, Brad
    Liang, Ruixing
    Bonn, D. A.
    Hardy, W. N.
    Doiron-Leyraud, Nicolas
    Carrington, A.
    Hussey, N. E.
    Taillefer, Louis
    Proust, Cyril
    COMPTES RENDUS PHYSIQUE, 2011, 12 (5-6) : 446 - 460
  • [10] ATOMIC-SCALE ANALYSIS OF QUANTUM NANOSTRUCTURES WITH THE STM
    JOHNSON, MB
    PFISTER, M
    ALVARADO, SF
    SALEMINK, HWM
    MICROELECTRONIC ENGINEERING, 1995, 27 (1-4) : 31 - 34