CT-based deep learning model for the prediction of DNA mismatch repair deficient colorectal cancer: a diagnostic study

被引:11
作者
Cao, Wuteng [1 ,2 ]
Hu, Huabin [2 ,3 ]
Guo, Jirui [2 ,4 ]
Qin, Qiyuan [2 ,4 ]
Lian, Yanbang [5 ]
Li, Jiao [1 ,2 ]
Wu, Qianyu [1 ,2 ]
Chen, Junhong [6 ]
Wang, Xinhua [1 ,2 ]
Deng, Yanhong [2 ,3 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Radiol, Guangzhou 510655, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 6, Guangdong Res Inst Gastroenterol, Guangdong Prov Key Lab Colorectal & Pelv Floor Dis, Guangzhou 510655, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Med Oncol, Guangzhou 510655, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Colorectal Surg, Dept Gen Surg, Guangzhou 510655, Guangdong, Peoples R China
[5] Zhengzhou Univ, Dept Radiol, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[6] Shenzhen Campus Sun Yat Sen Univ, Sch Publ Hlth Shenzhen, Shenzhen 518107, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA mismatch repair; Deep learning; Colorectal cancer; Computed Tomography; ResNet101; MICROSATELLITE INSTABILITY; ARTIFICIAL-INTELLIGENCE; BRAF MUTATION; COLON-CANCER; RADIOMICS; VALIDATION; DISEASE; IMAGES;
D O I
10.1186/s12967-023-04023-8
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundStratification of DNA mismatch repair (MMR) status in patients with colorectal cancer (CRC) enables individual clinical treatment decision making. The present study aimed to develop and validate a deep learning (DL) model based on the pre-treatment CT images for predicting MMR status in CRC.Methods1812 eligible participants (training cohort: n = 1124; internal validation cohort: n = 482; external validation cohort: n = 206) with CRC were enrolled from two institutions. All pretherapeutic CT images from three dimensions were trained by the ResNet101, then integrated by Gaussian process regression (GPR) to develop a full-automatic DL model for MMR status prediction. The predictive performance of the DL model was evaluated using the area under the receiver operating characteristic curve (AUC) and then tested in the internal and external validation cohorts. Additionally, the participants from institution 1 were sub-grouped by various clinical factors for subgroup analysis, then the predictive performance of the DL model for identifying MMR status between participants in different groups were compared.ResultsThe full-automatic DL model was established in the training cohort to stratify the MMR status, which presented promising discriminative ability with the AUCs of 0.986 (95% CI 0.971-1.000) in the internal validation cohort and 0.915 (95% CI 0.870-0.960) in the external validation cohort. In addition, the subgroup analysis based on the thickness of CT images, clinical T and N stages, gender, the longest diameter, and the location of tumors revealed that the DL model showed similar satisfying prediction performance.ConclusionsThe DL model may potentially serve as a noninvasive tool to facilitate the pre-treatment individualized prediction of MMR status in patients with CRC, which could promote the personalized clinical-making decision.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
Boland CR, 2010, GASTROENTEROLOGY, V138, P2073, DOI [10.1053/j.gastro.2009.12.064, 10.1053/j.gastro.2010.04.024]
[2]   Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study [J].
Cao, Yuntai ;
Zhang, Guojin ;
Zhang, Jing ;
Yang, Yingjie ;
Ren, Jialiang ;
Yan, Xiaohong ;
Wang, Zhan ;
Zhao, Zhiyong ;
Huang, Xiaoyu ;
Bao, Haihua ;
Zhou, Junlin .
FRONTIERS IN ONCOLOGY, 2021, 11
[3]   Molecular pathology of Lynch syndrome [J].
Cerretelli, Guia ;
Ager, Ann ;
Arends, Mark J. ;
Frayling, Ian M. .
JOURNAL OF PATHOLOGY, 2020, 250 (05) :518-531
[4]   Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature [J].
Chen, Xiaobo ;
He, Lan ;
Li, Qingshu ;
Liu, Liu ;
Li, Suyun ;
Zhang, Yuan ;
Liu, Zaiyi ;
Huang, Yanqi ;
Mao, Yun ;
Chen, Xin .
EUROPEAN RADIOLOGY, 2023, 33 (01) :11-22
[5]   Melanoma, Version 2.2016 [J].
Coit, Daniel G. ;
Thompson, John A. ;
Algazi, Alain ;
Andtbacka, Robert ;
Bichakjian, Christopher K. ;
Carson, William E., III ;
Daniels, Gregory A. ;
DiMaio, Dominick ;
Ernstoff, Marc ;
Fields, Ryan C. ;
Fleming, Martin D. ;
Gonzalez, Rene ;
Guild, Valerie ;
Halpern, Allan C. ;
Hodi, F. Stephen, Jr. ;
Joseph, Richard W. ;
Lange, Julie R. ;
Martini, Mary C. ;
Materin, Miguel A. ;
Olszanski, Anthony J. ;
Ross, Merrick I. ;
Salama, April K. ;
Skitzki, Joseph ;
Sosman, Jeff ;
Swetter, Susan M. ;
Tanabe, Kenneth K. ;
Torres-Roca, Javier F. ;
Trisal, Vijay ;
Urist, Marshall M. ;
McMillian, Nicole ;
Engh, Anita .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2016, 14 (04) :450-+
[6]   Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis [J].
De Smedt, L. ;
Lemahieu, J. ;
Palmans, S. ;
Govaere, O. ;
Tousseyn, T. ;
Van Cutsem, E. ;
Prenen, H. ;
Tejpar, S. ;
Spaepen, M. ;
Matthijs, G. ;
Decaestecker, C. ;
Lopez, X. Moles ;
Demetter, P. ;
Salmon, I. ;
Sagaert, X. .
BRITISH JOURNAL OF CANCER, 2015, 113 (03) :500-509
[7]  
De' Angelis Gian Luigi, 2018, Acta Biomed, V89, P97, DOI 10.23750/abm.v89i9-S.7960
[8]   Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning [J].
Echle, Amelie ;
Grabsch, Heike Irmgard ;
Quirke, Philip ;
van den Brandt, Piet A. ;
West, Nicholas P. ;
Hutchins, Gordon G. A. ;
Heij, Lara R. ;
Tan, Xiuxiang ;
Richman, Susan D. ;
Krause, Jeremias ;
Alwers, Elizabeth ;
Jenniskens, Josien ;
Offermans, Kelly ;
Gray, Richard ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Trautwein, Christian ;
Pearson, Alexander T. ;
Boor, Peter ;
Luedde, Tom ;
Gaisa, Nadine Therese ;
Hoffmeister, Michael ;
Kather, Jakob Nikolas .
GASTROENTEROLOGY, 2020, 159 (04) :1406-+
[9]   Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology [J].
Forghani, Reza ;
Savadjiev, Peter ;
Chatterjee, Avishek ;
Muthukrishnan, Nikesh ;
Reinhold, Caroline ;
Forghani, Behzad .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2019, 17 :995-1008
[10]   Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma [J].
Giannakis, Marios ;
Mu, Xinmeng Jasmine ;
Shukla, Sachet A. ;
Qian, Zhi Rong ;
Cohen, Ofir ;
Nishihara, Reiko ;
Bahl, Samira ;
Cao, Yin ;
Amin-Mansour, Ali ;
Yamauchi, Mai ;
Sukawa, Yasutaka ;
Stewart, Chip ;
Rosenberg, Mara ;
Mima, Kosuke ;
Inamura, Kentaro ;
Nosho, Katsuhiko ;
Nowak, Jonathan A. ;
Lawrence, Michael S. ;
Giovannucci, Edward L. ;
Chan, Andrew T. ;
Ng, Kimmie ;
Meyerhardt, Jeffrey A. ;
Van Allen, Eliezer M. ;
Getz, Gad ;
Gabriel, Stacey B. ;
Lander, Eric S. ;
Wu, Catherine J. ;
Fuchs, Charles S. ;
Ogino, Shuji ;
Garraway, Levi A. .
CELL REPORTS, 2016, 15 (04) :857-865