Experimental realisations of the fractional Schrodinger equation in the temporal domain

被引:78
作者
Liu, Shilong [1 ,2 ]
Zhang, Yingwen [1 ,3 ]
Malomed, Boris A. A. [4 ,5 ,6 ]
Karimi, Ebrahim [1 ,3 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton, Ottawa, ON K1N 6N5, Canada
[2] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[3] CNR, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[4] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] Tel Aviv Univ, Ctr Light Matter Interact, IL-69978 Tel Aviv, Israel
[6] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
基金
以色列科学基金会;
关键词
SOLITONS; SYMMETRY; DYNAMICS; LATTICE; SPACE; BEAMS;
D O I
10.1038/s41467-023-35892-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fractional Schrodinger equation (FSE)-a natural extension of the standard Schrodinger equation-is the basis of fractional quantum mechanics. It can be obtained by replacing the kinetic-energy operator with a fractional derivative. Here, we report the experimental realisation of an optical FSE for femtosecond laser pulses in the temporal domain. Programmable holograms and the single-shot measurement technique are respectively used to emulate a Levy waveguide and to reconstruct the amplitude and phase of the pulses. Varying the Levy index of the FSE and the initial pulse, the temporal dynamics is observed in diverse forms, including solitary, splitting and merging pulses, double Airy modes, and "rain-like" multi-pulse patterns. Furthermore, the transmission of input pulses carrying a fractional phase exhibits a "fractional-phase protection" effect through a regular (non-fractional) material. The experimentally generated fractional time-domain pulses offer the potential for designing optical signal-processing schemes. Studies on the fractional Schrodinger equation (FSE) remain mostly theoretical, due to the lack of materials supporting fractional dispersion or diffraction. Here, the authors indirectly realized the FSE using two programmable holograms acting as an optical Levy waveguide.
引用
收藏
页数:9
相关论文
共 53 条
[1]  
Agrawal GP, 2000, LECT NOTES PHYS, V542, P195
[2]   Spatio-temporal couplings in ultrashort laser pulses [J].
Akturk, Selcuk ;
Gu, Xun ;
Bowlan, Pamela ;
Trebino, Rick .
JOURNAL OF OPTICS, 2010, 12 (09)
[3]   Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles [J].
Alonso, Miguel A. .
ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (04) :272-365
[4]   Evolution of quantum superoscillations and optical superresolution without evanescent waves [J].
Berry, MV ;
Popescu, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6965-6977
[5]   ON RIESZ DERIVATIVE [J].
Cai, Min ;
Li, Changpin .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) :287-301
[6]   Airy-Bessel wave packets as versatile linear light bullets [J].
Chong, Andy ;
Renninger, William H. ;
Christodoulides, Demetrios N. ;
Wise, Frank W. .
NATURE PHOTONICS, 2010, 4 (02) :103-106
[7]   Rains of solitons in a fiber laser [J].
Chouli, Souad ;
Grelu, Philippe .
OPTICS EXPRESS, 2009, 17 (14) :11776-11781
[8]   LEVY FLIGHT SUPERDIFFUSION: AN INTRODUCTION [J].
Dubkov, A. A. ;
Spagnolo, B. ;
Uchaikin, V. V. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09) :2649-2672
[9]  
Economou EleftheriosN., 2006, GREENS FUNCTIONS QUA, V7
[10]   Airy beams and accelerating waves: an overview of recent advances [J].
Efremidis, Nikolaos K. ;
Chen, Zhigang ;
Segev, Mordechai ;
Christodoulides, Demetrios N. .
OPTICA, 2019, 6 (05) :686-701