Deep Successive Convex Approximation for Image Super-Resolution

被引:2
|
作者
Li, Xiaohui [1 ]
Wang, Jinpeng [1 ]
Liu, Xinbo [2 ]
机构
[1] Liaoning Univ Technol, Sch Elect & Informat Engn, Jinzhou 121001, Peoples R China
[2] Woosong Univ, SolBridge Int Sch Business, Daejeon 34613, South Korea
关键词
image super-resolution; successive convex approximation; deep learning; LOW-RESOLUTION IMAGES; NETWORK;
D O I
10.3390/math11030651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Image super-resolution (SR), as one of the classic image processing issues, has attracted increasing attention from researchers. As a highly ill-conditioned, non-convex optimization issue, it is difficult for image SR to restore a high-resolution (HR) image from a given low-resolution (LR) instance. Recent researchers have tended to regard image SR as a regression task and to design an end-to-end convolutional neural network (CNN) to predict the pixels directly, which lacks inherent theoretical analysis and limits the effectiveness of the restoration. In this paper, we analyze image SR from an optimization perspective and develop a deep successive convex approximation network (SCANet) for generating HR images. Specifically, we divide non-convex optimization into several convex LASSO sub-problems and use CNN to adaptively learn the parameters. To boost network representation, we use residual feature aggregation (RFA) blocks and devise a spatial and channel attention (SACA) mechanism to improve the restoration capacity. The experimental results show that the proposed SCANet can restore HR images more effectively than other works. Specifically, SCANet achieves higher PSNR/SSIM results and generates more satisfying textures.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] IMAGE DEBLURRING AND SUPER-RESOLUTION USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Albluwi, Fatma
    Krylov, Vladimir A.
    Dahyot, Rozenn
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [32] Superpixel Driven Unsupervised Deep Image Super-Resolution
    Jun Yang
    Chao Zhang
    Li Xu
    Bing Luo
    Neural Processing Letters, 2023, 55 : 7887 - 7905
  • [33] Image Super-Resolution Using Deep RCSA Network
    Cao, Yuheng
    Zhou, Mengjie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 695 - 706
  • [34] Anchored neighborhood deep network for single-image super-resolution
    Shi, Wuzhen
    Liu, Shaohui
    Jiang, Feng
    Zhao, Debin
    Tian, Zhihong
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,
  • [35] A review of single image super-resolution reconstruction based on deep learning
    Ming Yu
    Jiecong Shi
    Cuihong Xue
    Xiaoke Hao
    Gang Yan
    Multimedia Tools and Applications, 2024, 83 : 55921 - 55962
  • [36] Coupled Deep Autoencoder for Single Image Super-Resolution
    Zeng, Kun
    Yu, Jun
    Wang, Ruxin
    Li, Cuihua
    Tao, Dacheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) : 27 - 37
  • [37] Efficient Blind Image Super-Resolution
    Vais, Olga
    Makarov, Ilya
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 229 - 240
  • [38] Single image super-resolution approaches in medical images based-deep learning: a survey
    El-Shafai, Walid
    Ali, Anas M.
    Abd El-Nabi, Samy
    El-Rabaie, El-Sayed M.
    Abd El-Samie, Fathi E.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (10) : 30467 - 30503
  • [39] From Deep Image Decomposition to Single Depth Image Super-Resolution
    Zhao, Lijun
    Wang, Ke
    Zhang, Jinjing
    Bai, Huihui
    Zhao, Yao
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 23 - 34
  • [40] Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution
    Li, Jiaxin
    Zheng, Ke
    Gao, Lianru
    Han, Zhu
    Li, Zhi
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63