An in-situ synergistic enhancement strategy from g-C3N4 and PDOL composite solid electrolyte on the interface stability of solid-state lithium battery

被引:46
作者
Wu, Heng-fei [1 ]
Li, Rui [1 ]
Li, Jing-xuan [1 ]
Zhou, Li -ping [2 ]
Liu, Ying [2 ]
Zhang, Gang [3 ]
Jing, Mao-xiang [1 ]
机构
[1] Jiangsu Univ, Inst Adv Mat, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Anhui Yijiatong Battery Co Ltd, Xuancheng 242000, Peoples R China
[3] Yangzhou Junhe Film Technol Co, Yizheng 211400, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid electrolyte; Interface; Synergistical enhancement; Artificial SEI film; PRETREATMENT; PERFORMANCE;
D O I
10.1016/j.surfin.2024.104048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interface stability of lithium metal anode/electrolyte has been an important problem hindering the development of solid-state lithium batteries. In this work, we proposed to in-situ recombine poly(1,3-dioxolane) (PDOL) with g-C3N4 to improve the ion transport ability of PDOL solid electrolyte and simultaneously improve the electrolyte/electrode interface stability. The composite solid electrolyte with a thickness of about 23 mu m exhibits good electrochemical performances when the introduced g-C3N4 mass is 0.3 wt% of PDOL. The ionic conductivity of the solid electrolyte is enhanced from 3.16 x 10-4 S/cm to 4.14 x 10-4 S/cm, the ion migration number increases from 0.32 to 0.45, and the electrochemical window widens from 4.6 V to 4.8 V under the modulation of g-C3N4. The stability of Li metal anode was significantly improved owing to the introduction of gC3N4 in the composite solid electrolyte, the assembled lithium-symmetric cells and NCM622/Li cells exhibites more stable cycling performances than those assembled with pure PDOL electrolyte. The solid NCM622/Li cell with PDOL/g-C3N4 composite solid electrolyte can be cycled for 200 times at 0.3 C with a capacity retention of 21 % higher compared with the cell with pure PDOL solid electrolyte. This composite solid electrolyte can also be directly used as artificial SEI film on the lithium metal surface via in-situ polymarization, which further confirmed that the interface stability of lithium anode and electrolyte was enhanced by the synergistic effect of PDOL and g-C3N4 bicomponents.
引用
收藏
页数:9
相关论文
共 38 条
[11]   Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries [J].
Jie, Yulin ;
Ren, Xiaodi ;
Cao, Ruiguo ;
Cai, Wenbin ;
Jiao, Shuhong .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (25)
[12]   Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries [J].
Kang, Hyunseo ;
Song, Minkyu ;
Yang, MinHo ;
Lee, Jae-won .
JOURNAL OF POWER SOURCES, 2021, 485
[13]   Revealing the Multifunctions of Li3N in the Suspension Electrolyte for Lithium Metal Batteries [J].
Kim, Mun Sek ;
Zhang, Zewen ;
Wang, Jingyang ;
Oyakhire, Solomon T. ;
Kim, Sang Cheol ;
Yu, Zhiao ;
Chen, Yuelang ;
Boyle, David T. ;
Ye, Yusheng ;
Huang, Zhuojun ;
Zhang, Wenbo ;
Xu, Rong ;
Sayavong, Philaphon ;
Bent, Stacey F. ;
Qin, Jian ;
Bao, Zhenan ;
Cui, Yi .
ACS NANO, 2023, 17 (03) :3168-3180
[14]   A bifunctional composite artificial solid electrolyte interphase for high stable solid-state lithium batteries [J].
Li, Rui ;
Li, Jie ;
Li, Lin-xin ;
Yang, Hua ;
Zhang, Gang ;
Xiang, Jun ;
Shen, Xiang-qian ;
Jing, Mao-xiang .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 657
[15]   Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium [J].
Li, Yanbin ;
Sun, Yongming ;
Pei, Allen ;
Chen, Kaifeng ;
Vailionis, Arturas ;
Li, Yuzhang ;
Zheng, Guangyuan ;
Sun, Jie ;
Cui, Yi .
ACS CENTRAL SCIENCE, 2018, 4 (01) :97-104
[16]   Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery [J].
Li, Yuhan ;
Fu, Zhenyu ;
Lu, Shiyao ;
Sun, Xue ;
Zhang, Xiaorui ;
Weng, Ling .
CHEMICAL ENGINEERING JOURNAL, 2022, 440
[17]   Lithium Fluoride Coated Silicon Nanocolumns as Anodes for Lithium Ion Batteries [J].
Lin, Jie ;
Peng, Hu ;
Kim, Jun-Hyuk ;
Wygant, Bryan R. ;
Meyerson, Melissa L. ;
Rodriguez, Rodrigo ;
Liu, Yang ;
Kawashima, Kenta ;
Gu, Dandan ;
Peng, Dong-Liang ;
Guo, Hang ;
Heller, Adam ;
Mullins, C. Buddie .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) :18465-18472
[18]   Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte [J].
Liu, Qi ;
Cai, Biya ;
Li, Song ;
Yu, Qipeng ;
Lv, Fengzheng ;
Kang, Feiyu ;
Wang, Qiang ;
Li, Baohua .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (15) :7197-7204
[19]   Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes [J].
Liu, Wei ;
Liu, Pengcheng ;
Mitlin, David .
ADVANCED ENERGY MATERIALS, 2020, 10 (43)
[20]   Lithium/Graphene Composite Anode with 3D Structural LiF Protection Layer for High-Performance Lithium Metal Batteries [J].
Liu, Zhenyuan ;
He, Bangyi ;
Zhang, Zibo ;
Deng, Wei ;
Dong, Daojie ;
Xia, Shengjie ;
Zhou, Xufeng ;
Liu, Zhaoping .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (02) :2871-2880