An in-situ synergistic enhancement strategy from g-C3N4 and PDOL composite solid electrolyte on the interface stability of solid-state lithium battery

被引:46
作者
Wu, Heng-fei [1 ]
Li, Rui [1 ]
Li, Jing-xuan [1 ]
Zhou, Li -ping [2 ]
Liu, Ying [2 ]
Zhang, Gang [3 ]
Jing, Mao-xiang [1 ]
机构
[1] Jiangsu Univ, Inst Adv Mat, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Anhui Yijiatong Battery Co Ltd, Xuancheng 242000, Peoples R China
[3] Yangzhou Junhe Film Technol Co, Yizheng 211400, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid electrolyte; Interface; Synergistical enhancement; Artificial SEI film; PRETREATMENT; PERFORMANCE;
D O I
10.1016/j.surfin.2024.104048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interface stability of lithium metal anode/electrolyte has been an important problem hindering the development of solid-state lithium batteries. In this work, we proposed to in-situ recombine poly(1,3-dioxolane) (PDOL) with g-C3N4 to improve the ion transport ability of PDOL solid electrolyte and simultaneously improve the electrolyte/electrode interface stability. The composite solid electrolyte with a thickness of about 23 mu m exhibits good electrochemical performances when the introduced g-C3N4 mass is 0.3 wt% of PDOL. The ionic conductivity of the solid electrolyte is enhanced from 3.16 x 10-4 S/cm to 4.14 x 10-4 S/cm, the ion migration number increases from 0.32 to 0.45, and the electrochemical window widens from 4.6 V to 4.8 V under the modulation of g-C3N4. The stability of Li metal anode was significantly improved owing to the introduction of gC3N4 in the composite solid electrolyte, the assembled lithium-symmetric cells and NCM622/Li cells exhibites more stable cycling performances than those assembled with pure PDOL electrolyte. The solid NCM622/Li cell with PDOL/g-C3N4 composite solid electrolyte can be cycled for 200 times at 0.3 C with a capacity retention of 21 % higher compared with the cell with pure PDOL solid electrolyte. This composite solid electrolyte can also be directly used as artificial SEI film on the lithium metal surface via in-situ polymarization, which further confirmed that the interface stability of lithium anode and electrolyte was enhanced by the synergistic effect of PDOL and g-C3N4 bicomponents.
引用
收藏
页数:9
相关论文
共 38 条
[1]   A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers [J].
Bai, Maohui ;
Xie, Keyu ;
Yuan, Kai ;
Zhang, Kun ;
Li, Nan ;
Shen, Chao ;
Lai, Yanqing ;
Vajtai, Robert ;
Ajayan, Pulickel ;
Wei, Bingqing .
ADVANCED MATERIALS, 2018, 30 (29)
[2]   Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries [J].
Baloch, Marya ;
Shanmukaraj, Devaraj ;
Bondarchuk, Oleksandr ;
Bekaert, Emilie ;
Rojo, Teofilo ;
Armand, Michel .
ENERGY STORAGE MATERIALS, 2017, 9 :141-149
[3]   Ambient Fabrication of Large-Area Graphene Films via a Synchronous Reduction and Assembly Strategy [J].
Cao, Xuebo ;
Qi, Dianpeng ;
Yin, Shengyan ;
Bu, Jing ;
Li, Fengji ;
Goh, Chin Foo ;
Zhang, Sam ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2013, 25 (21) :2957-2962
[4]   Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition [J].
Chen, Zhigao ;
Chen, Weimin ;
Wang, Hongxia ;
Zhang, Cheng ;
Qi, Xiaoqun ;
Qie, Long ;
Wu, Fengshou ;
Wang, Liang ;
Yu, Faquan .
NANO ENERGY, 2022, 93
[5]   1,3-dioxolane pretreatment to improve the interfacial characteristics of a lithium anode [J].
Ding Fei ;
Liu Yuwen ;
Hu Xinguo .
RARE METALS, 2006, 25 (04) :297-302
[6]   Inducing the Formation of In Situ Li3N-Rich SEI via Nanocomposite Plating of Mg3N2 with Lithium Enables High-Performance 3D Lithium-Metal Batteries [J].
Dong, Qingyuan ;
Hong, Bo ;
Fan, Hailin ;
Jiang, Huai ;
Zhang, Kai ;
Lai, Yanqing .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) :627-636
[7]   PEO based polymer-ceramic hybrid solid electrolytes: a review [J].
Feng, Jingnan ;
Wang, Li ;
Chen, Yijun ;
Wang, Peiyu ;
Zhang, Hanrui ;
He, Xiangming .
NANO CONVERGENCE, 2021, 8 (01)
[8]   An Autotransferable g-C3N4 Li+-Modulating Layer toward Stable Lithium Anodes [J].
Guo, Yanpeng ;
Niu, Ping ;
Liu, Yayuan ;
Ouyang, Yan ;
Li, Dian ;
Zhai, Tianyou ;
Li, Huiqiao ;
Cui, Yi .
ADVANCED MATERIALS, 2019, 31 (27)
[9]   A high ionic conductive PDOL/LAGP composite solid electrolyte film for Interfacial Stable solid-state lithium batteries [J].
Huang, Zhen-hao ;
Jing, Mao-xiang ;
Wang, Peng-qin ;
Shao, Wen-wen ;
Zhang, Zhi-peng ;
Zhang, Gang ;
Shen, Xiang-qian .
CERAMICS INTERNATIONAL, 2023, 49 (03) :5510-5517
[10]   Solid-State Electrolyte Design for Lithium Dendrite Suppression [J].
Ji, Xiao ;
Hou, Singyuk ;
Wang, Pengfei ;
He, Xinzi ;
Piao, Nan ;
Chen, Ji ;
Fan, Xiulin ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2020, 32 (46)