Interpolation of Operators in Hardy-Type Spaces

被引:1
作者
Krotov, V. G. [1 ]
机构
[1] Belarusian State Univ, Prosp Nezavisimosti 4, Minsk 220030, BELARUS
关键词
nontangent maximal function; Hardy spaces; Marcinkiewicz interpolation theorem; THEOREM; MARCINKIEWICZ;
D O I
10.1134/S0081543823050103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A number of statements similar to the Marcinkiewicz interpolation theorem are presented. The difference from the classical forms of this theorem is that the spaces of integrable functions are replaced by certain classes of functions that are extensions of various Hardy spaces
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
[31]   Volterra-Type Integration Operators Between Weighted Bergman Spaces and Hardy Spaces [J].
Yongjiang Duan ;
Siyu Wang ;
Zipeng Wang .
Computational Methods and Function Theory, 2023, 23 :589-627
[32]   Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type [J].
Peng Chen ;
Xuan Thinh Duong ;
Ji Li ;
Lesley A. Ward ;
Lixin Yan .
Mathematische Zeitschrift, 2016, 282 :1033-1065
[33]   Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type [J].
Chen, Peng ;
Xuan Thinh Duong ;
Li, Ji ;
Ward, Lesley A. ;
Yan, Lixin .
MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) :1033-1065
[34]   Generalized Stevie-Sharma type operators from Hardy spaces into nth weighted type spaces [J].
Abbasi, Ebrahim ;
Liu, Yongmin ;
Hassanlou, Mostafa .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) :1543-1554
[35]   A Littlewood–Paley Type Decomposition and Weighted Hardy Spaces Associated with Operators [J].
Xuan Thinh Duong ;
Ji Li ;
Lixin Yan .
The Journal of Geometric Analysis, 2016, 26 :1617-1646
[36]   Boundedness of multilinear fractional type operators on Hardy spaces with variable exponents [J].
Jian Tan .
Analysis and Mathematical Physics, 2020, 10
[37]   Boundedness of multilinear fractional type operators on Hardy spaces with variable exponents [J].
Tan, Jian .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
[38]   New Hardy Spaces of Musielak–Orlicz Type and Boundedness of Sublinear Operators [J].
Luong Dang Ky .
Integral Equations and Operator Theory, 2014, 78 :115-150
[39]   CHARACTERIZATIONS OF HARDY-TYPE, BERGMAN-TYPE AND DIRICHLET-TYPE SPACES ON CERTAIN CLASSES OF COMPLEX-VALUED FUNCTIONS [J].
Chen, Shaolin ;
Rasila, Antti ;
Vuorinen, Matti .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 :427-448
[40]   Weighted composition operators on Hardy spaces [J].
Contreras, MD ;
Hernández-Díaz, AG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (01) :224-233