Hexahelicene DNA-binding: Minor groove selectivity, semi-intercalation and chiral recognition

被引:3
|
作者
Vacek, Jan [1 ]
Zatloukalova, Martina [1 ]
Bartheldyova, Eliska [2 ]
Reha, David [3 ]
Minofar, Babak [4 ]
Bednarova, Klara [5 ]
Renciuk, Daniel [5 ]
Coufal, Jan [5 ]
Fojta, Miroslav [5 ]
Zadny, Jaroslav [6 ]
Gessini, Alessandro [7 ]
Rossi, Barbara [7 ]
Storch, Jan [1 ,6 ]
Kabelac, Martin [1 ,4 ]
机构
[1] Palacky Univ, Fac Med & Dent, Dept Med Chem & Biochem, Hnevotinska 3, Olomouc 77515, Czech Republic
[2] Nexars C2P, Palachovo Namesti 2, Brno 62500, Czech Republic
[3] VSB Tech Univ Ostrava, IT4Innovat, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
[4] Univ South Bohemia, Fac Sci, Dept Chem, Branisovska 31, Ceske Budejovice 37005, Czech Republic
[5] Czech Acad Sci, Inst Biophys, Kralovopolska 135, Brno 61200, Czech Republic
[6] Inst Chem Proc Fundamentals AS CR, Vvi, Rozvojova 135, Prague 6, Czech Republic
[7] Elettra Sincrotrone Trieste SCpA, SS 14 Km 163 5, I-34149 Trieste, Italy
关键词
Chirality; Nucleic acids; B-DNA double helix; Semi-intercalation; 6]helicene; Imidazolium; RESONANCE RAMAN-SPECTROSCOPY; ONE HUNDRED YEARS; CIRCULAR-DICHROISM; STEREOSELECTIVE SYNTHESES; NUCLEIC-ACIDS; DERIVATIVES; ELECTRODE; ENERGY; DRUG; POLYMORPHISM;
D O I
10.1016/j.ijbiomac.2023.125905
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this contribution, we focused on a fundamental study targeting the interaction of water-soluble [6]helicene derivative 1 (1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide) with double-stranded (ds) DNA. A synthetic 30-base pair duplex, plasmid, chromosomal calf thymus and salmon DNA were investigated using electrochemistry, electrophoresis and spectroscopic tools supported by molecular dynamics (MD) and quantum mechanical approaches. Both experimental and theoretical work revealed the minor groove binding of 1 to the dsDNA. Both the positively charged imidazole ring and hydrophobic part of the side chain contributed to the accommodation of 1 into the dsDNA structure. Neither intercalation into the duplex DNA nor the stable binding of 1 to single-stranded DNA were found in topoisomerase relaxation experiments with structural components of 1, i.e. [6]helicene (2) and 1-butyl-3-methylimidazolium bromide (3), nor by theoretical calculations. Finally, the binding of optically pure enantiomers (P)-1 and (M)-1 was studied using circular dichroism spectroscopy, isothermal titration calorimetry and UV Resonance Raman (UVRR) methods. Using MD and quantum mechanical methods, minor groove and semi-intercalation were proposed for compound 1 as the predominant binding modes. From the UVRR findings, we also can conclude that 1 tends to preferentially interact with adenine and guanine residues in the structure of dsDNA.
引用
收藏
页数:16
相关论文
共 48 条
  • [21] Effects of minor and major groove-binding drugs and intercalators on the DNA association of minor groove-binding proteins RecA and deoxyribonuclease I detected by flow linear dichroism
    Tuite, E
    Sehlstedt, U
    Hagmar, P
    Norden, B
    Takahashi, M
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 243 (1-2): : 482 - 492
  • [22] Quinoline-3-Carboxylic Acids "DNA Minor Groove-Binding Agent"
    Purohit, Priyank
    Mittal, Ravi K.
    Khatana, Kavita
    ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, 2022, 22 (03) : 344 - 348
  • [23] Photoactive RuII-Polypyridyl Complexes that Display Sequence Selectivity and High-Affinity Binding to Duplex DNA through Groove Binding
    Ghosh, Amrita
    Das, Priyadip
    Gill, Martin R.
    Kar, Prasenjit
    Walker, Michaell G.
    Thomas, Jim A.
    Das, Amitava
    CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (07) : 2089 - 2098
  • [24] Adenine-thymine base pair recognition by an anthryl probe from the DNA minor groove
    Kumar, CV
    Punzalan, EHA
    Tan, WB
    TETRAHEDRON, 2000, 56 (36) : 7027 - 7040
  • [25] Chiral Platinum(II) Complexes Featuring Phosphine and Chloroquine Ligands as Cytotoxic and Monofunctional DNA-Binding Agents
    Villarreal, Wilmer
    Colina-Vegas, Legna
    de Oliveira, Clayton Rodrigues
    Tenorio, Juan C.
    Ellena, Javier
    Gozzo, Fabio C.
    Cominetti, Marcia Regina
    Ferreira, Antonio G.
    Barbosa Ferreira, Marco Antonio
    Navarro, Maribel
    Batista, Alzir A.
    INORGANIC CHEMISTRY, 2015, 54 (24) : 11709 - 11720
  • [26] Studies on a novel minor-groove targeting artificial nuclease: Synthesis and DNA binding behavior
    Yin Qiang
    Zhang Zhen
    Zhao Yu-fen
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2007, 23 (01) : 44 - 47
  • [28] Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding
    Chiu, Tsu-Pei
    Rao, Satyanarayan
    Mann, Richard S.
    Honig, Barry
    Rohs, Remo
    NUCLEIC ACIDS RESEARCH, 2017, 45 (21) : 12565 - 12576
  • [29] DNA Minor Groove Induced Dimerization of Heterocyclic Cations: Compound Structure, Binding Affinity, and Specificity for a TTAA Site
    Munde, Manoj
    Kumar, Arvind
    Nhili, Raja
    Depauw, Sabine
    David-Cordonnier, Marie-Helene
    Ismail, Mohamed A.
    Stephens, Chad E.
    Farahat, Abdelbasset A.
    Batista-Parra, Adalgisa
    Boykin, David W.
    Wilson, W. David
    JOURNAL OF MOLECULAR BIOLOGY, 2010, 402 (05) : 847 - 864
  • [30] Molecular dynamics simulations of A • T-rich oligomers:: Sequence-specific binding of Na+ in the minor groove of B-DNA
    Mocci, F
    Saba, G
    BIOPOLYMERS, 2003, 68 (04) : 471 - 485