Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors

被引:2
作者
Zagidullin, Rishat [1 ]
Tietze, Stefan [2 ,3 ]
Zepf, Matt [2 ,3 ]
Wang, Jingwei [4 ,5 ]
Rykovanov, Sergey [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr AI Technol, Moscow, Russia
[2] Helmholtz Inst Jena, Frobelstieg 3, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Phys Astron Fak, Max Wien Pl 1, D-07743 Jena, Germany
[4] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Chinese Acad Sci Ctr Excellence Ultraintense Laser, Shanghai 201800, Peoples R China
基金
俄罗斯科学基金会;
关键词
HIGH-HARMONIC-GENERATION; LASER-PULSE; DRIVEN;
D O I
10.1063/5.0155957
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The carrier-envelope phase (CEP) f(0) is one of the key parameters in the generation of isolated attosecond pulses. In particular, "cosine" pulses (f(0) = 0) are best suited for generation of single attosecond pulses in atomic media. Such "cosine" pulses have the peak of the most intense cycle aligned with the peak of the pulse envelope, and therefore have the highest contrast between the peak intensity and the neighboring cycles. In this paper, the dynamics of single attosecond pulse generation from a relativistically oscillating plasma mirror is investigated. We use an elementary analytical model as well as particle-in-cell simulations to study few-cycle attosecond pulses. We find that the phase of the field driving the surface oscillations depends on the plasma density and preplasma scale length. This leads us to a counterintuitive conclusion: for the case of normal incidence and a sharp plasma-vacuum boundary, the CEP required for the generation of a single attosecond pulse phase is closer to f(0) = p/2 (a "sine" pulse), with the exact value depending on the plasma parameters.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Enhanced relativistic harmonics by electron nanobunching [J].
an der Bruegge, D. ;
Pukhov, A. .
PHYSICS OF PLASMAS, 2010, 17 (03)
[2]   Attosecond control of electronic processes by intense light fields [J].
Baltuska, A ;
Udem, T ;
Uiberacker, M ;
Hentschel, M ;
Goulielmakis, E ;
Gohle, C ;
Holzwarth, R ;
Yakovlev, VS ;
Scrinzi, A ;
Hänsch, TW ;
Krausz, F .
NATURE, 2003, 421 (6923) :611-615
[3]  
Bleaney BI Bleaney B., 1976, ELECT MAGNETISM, V3rd
[4]  
Borot A, 2012, NAT PHYS, V8, P416, DOI [10.1038/nphys2269, 10.1038/NPHYS2269]
[5]   INTERACTION OF AN ULTRASHORT, RELATIVISTICALLY STRONG LASER-PULSE WITH AN OVERDENSE PLASMA [J].
BULANOV, SV ;
NAUMOVA, NM ;
PEGORARO, F .
PHYSICS OF PLASMAS, 1994, 1 (03) :745-757
[6]   Toward a self-consistent model of the interaction between an ultra-intense, normally incident laser pulse with an overdense plasma [J].
Debayle, A. ;
Sanz, J. ;
Gremillet, L. ;
Mima, K. .
PHYSICS OF PLASMAS, 2013, 20 (05)
[7]   SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation [J].
Derouillat, J. ;
Beck, A. ;
Perez, F. ;
Vinci, T. ;
Chiaramello, M. ;
Grassi, A. ;
Fle, M. ;
Bouchard, G. ;
Plotnikov, I. ;
Aunai, N. ;
Dargent, J. ;
Riconda, C. ;
Grech, M. .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 :351-373
[8]   High harmonic generation in the relativistic limit [J].
Dromey, B. ;
Zepf, M. ;
Gopal, A. ;
Lancaster, K. ;
Wei, M. S. ;
Krushelnick, K. ;
Tatarakis, M. ;
Vakakis, N. ;
Moustaizis, S. ;
Kodama, R. ;
Tampo, M. ;
Stoeckl, C. ;
Clarke, R. ;
Habara, H. ;
Neely, D. ;
Karsch, S. ;
Norreys, P. .
NATURE PHYSICS, 2006, 2 (07) :456-459
[9]   Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas [J].
Dromey, B. ;
Cousens, S. ;
Rykovanov, S. ;
Yeung, M. ;
Jung, D. ;
Gautier, D. C. ;
Dzelzainis, T. ;
Kiefer, D. ;
Palaniyppan, S. ;
Shah, R. ;
Schreiber, J. ;
Fernandez, J. C. ;
Lewis, C. L. S. ;
Zepf, M. ;
Hegelich, B. M. .
NEW JOURNAL OF PHYSICS, 2013, 15
[10]  
Dromey B, 2012, NAT PHYS, V8, P804, DOI [10.1038/nphys2439, 10.1038/NPHYS2439]