Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound

被引:11
|
作者
Lucassen, Ruben T. [1 ,2 ]
Jafari, Mohammad H. [1 ]
Duggan, Nicole M. [3 ]
Jowkar, Nick [1 ]
Mehrtash, Alireza [1 ]
Fischetti, Chanel [3 ]
Bernier, Denie [3 ]
Prentice, Kira [4 ]
Duhaime, Erik P. [4 ]
Jin, Mike [1 ]
Abolmaesumi, Purang [5 ]
Heslinga, Friso G. [6 ]
Veta, Mitko
Duran-Mendicuti, Maria A. [1 ]
Frisken, Sarah [1 ]
Shyn, Paul B. [1 ]
Golby, Alexandra J.
Boyer, Edward [3 ]
Wells, William M. [1 ]
Goldsmith, Andrew J. [3 ,7 ,8 ]
Kapur, Tina [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Eindhoven Univ Technol, Dept Biomed Engn, NL-5612 Eindhoven, Netherlands
[3] Brigham & Womens Hosp, Dept Emergency Med, Boston, MA 02115 USA
[4] Centaur Labs, Boston, MA 02116 USA
[5] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5T 1Z4, Canada
[6] Eindhoven Univ Technol, Dept Biomed Engn, NL-5612 Eindhoven, Netherlands
[7] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA 02115 USA
[8] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Videos; Lung; Location awareness; COVID-19; Ultrasonic imaging; Annotations; Image segmentation; Lung ultrasound; B-lines; deep learning; heart failure; PULMONARY-EDEMA; COVID-19; PATIENTS; HEART-FAILURE; DIAGNOSIS; ULTRASONOGRAPHY; CONGESTION; IMAGES;
D O I
10.1109/JBHI.2023.3282596
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung ultrasound (LUS) is an important imaging modality used by emergency physicians to assess pulmonary congestion at the patient bedside. B-line artifacts in LUS videos are key findings associated with pulmonary congestion. Not only can the interpretation of LUS be challenging for novice operators, but visual quantification of B-lines remains subject to observer variability. In this work, we investigate the strengths and weaknesses of multiple deep learning approaches for automated B-line detection and localization in LUS videos. We curate and publish, BEDLUS, a new ultrasound dataset comprising 1,419 videos from 113 patients with a total of 15,755 expert-annotated B-lines. Based on this dataset, we present a benchmark of established deep learning methods applied to the task of B-line detection. To pave the way for interpretable quantification of B-lines, we propose a novel "single-point" approach to B-line localization using only the point of origin. Our results show that (a) the area under the receiver operating characteristic curve ranges from 0.864 to 0.955 for the benchmarked detection methods, (b) within this range, the best performance is achieved by models that leverage multiple successive frames as input, and (c) the proposed single-point approach for B-line localization reaches an F-1-score of 0.65, performing on par with the inter-observer agreement. The dataset and developed methods can facilitate further biomedical research on automated interpretation of lung ultrasound with the potential to expand the clinical utility.
引用
收藏
页码:4352 / 4361
页数:10
相关论文
共 50 条
  • [1] SOURCES OF VARIABILITY IN THE DETECTION OF B-LINES, USING LUNG ULTRASOUND
    Pivetta, Emanuele
    Baldassa, Federico
    Masellis, Serena
    Bovaro, Federica
    Lupia, Enrico
    Maule, Milena M.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2018, 44 (06) : 1212 - 1216
  • [2] Automatic Detection of B-Lines in In Vivo Lung Ultrasound
    Moshavegh, Ramin
    Hansen, Kristoffer Lindskov
    Moller-Sorensen, Hasse
    Nielsen, Michael Bachmann
    Jensen, Jorgen Arendt
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2019, 66 (02) : 309 - 317
  • [3] What are the minimum requirements to establish proficiency in lung ultrasound training for quantifying B-lines?
    Russell, Frances M.
    Ferre, Robinson
    Ehrman, Robert R.
    Noble, Vicki
    Gargani, Luna
    Collins, Sean P.
    Levy, Phillip D.
    Fabre, Katarina L.
    Eckert, George J.
    Pang, Peter S.
    ESC HEART FAILURE, 2020, 7 (05): : 2941 - 2947
  • [4] Localizing B-Lines in Lung Ultrasonography by Weakly Supervised Deep Learning, In-Vivo Results
    van Sloun, Ruud J. G.
    Demi, Libertario
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (04) : 957 - 964
  • [5] OPTIMIZING LUNG ULTRASOUND: THE EFFECT OF DEPTH, GAIN AND FOCAL POSITION ON SONOGRAPHIC B-LINES
    Duggan, Nicole M.
    Goldsmith, Andrew J.
    AL Saud, Ahad Alhassan
    Ma, Irene W. Y.
    Shokoohi, Hamid
    Liteplo, Andrew s.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2022, 48 (08) : 1509 - 1517
  • [6] Lung ultrasound B-lines in exacerbations of chronic obstructive pulmonary disease
    Sriram, Krishna B.
    Singh, Maninder
    INTERNAL MEDICINE JOURNAL, 2017, 47 (03) : 324 - 327
  • [7] B-lines by lung ultrasound as a predictor of re-intubation in mechanically ventilated patients with heart failure
    Hyun, Junho
    Kim, Ah-ram
    Lee, Sang Eun
    Kim, Min-Seok
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [8] Diagnostic value of lung ultrasound B-lines for evaluating left ventricular filling pressure
    Takahiro Sakamoto
    Toshihiko Asanuma
    Hiroyuki Sasaki
    Hiroshi Kawahara
    Kazuhiko Uchida
    Akihiro Endo
    Hiroyuki Yoshitomi
    Kazuaki Tanabe
    Cardiovascular Ultrasound, 23 (1)
  • [9] B-LINES QUANTIFY THE LUNG WATER CONTENT: A LUNG ULTRASOUND VERSUS LUNG GRAVIMETRY STUDY IN ACUTE LUNG INJURY
    Jambrik, Zoltan
    Gargani, Luna
    Adamicza, Agnes
    Kaszaki, Jozsef
    Varga, Albert
    Forster, Tamas
    Boros, Mihaly
    Picano, Eugenio
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2010, 36 (12) : 2004 - 2010
  • [10] Emergency department ultrasound for the detection of B-lines in the early diagnosis of acute decompensated heart failure: a systematic review and meta-analysis
    McGivery, Kyle
    Atkinson, Paul
    Lewis, David
    Taylor, Luke
    Harris, Tim
    Gadd, Kathleen
    Fraser, Jacqueline
    Stoica, George
    CANADIAN JOURNAL OF EMERGENCY MEDICINE, 2018, 20 (03) : 343 - 352