THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT

被引:0
作者
Wang, Yuxi [1 ]
Zhu, Mengkun [2 ]
Chen, Yang
机构
[1] Univ Macau, Fac Sci & Technol, Dept Math, Ave Univ, Taipa, Macau, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
基金
中国国家自然科学基金;
关键词
Orthogonal polynomials; Hankel matrices; smallest eigenvalue; ORTHOGONAL POLYNOMIALS; GAUSSIAN WEIGHT; DETERMINANT;
D O I
10.1090/proc/16554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of the smallest eigenvalue & lambda;N, of the (N + 1) x (N + 1) Hankel matrix MN = (& mu;j+k)0 & LE;j,k & LE;N generated by the semi-classical Hermite weight w(z, t) = |z|& lambda; exp (-z2 +tz) , z, t & ISIN; R, & lambda; > -1. An asymptotic expression of the orthonormal polynomi-als PN(z) with the semi-classical Hermite weight w(z, t) is established as N tends to infinity. Based on the orthonormal polynomials PN(z), we obtain the specific asymptotic formulas of & lambda;N.
引用
收藏
页码:5345 / 5352
页数:8
相关论文
共 23 条
[1]   Painleve V and time-dependent Jacobi polynomials [J].
Basor, Estelle ;
Chen, Yang ;
Ehrhardt, Torsten .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
[2]  
Berg C, 2002, MATH SCAND, V91, P67
[3]   Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge [J].
Bogatskiy, A. ;
Claeys, T. ;
Its, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 347 (01) :127-162
[4]   On the linear statistics of Hermitian random matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04) :1141-1152
[5]   Smallest eigenvalues of Hankel matrices for exponential weights [J].
Chen, Y ;
Lubinsky, DS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :476-495
[6]   Thermodynamic relations of the Hermitian matrix ensembles [J].
Chen, Y ;
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19) :6633-6654
[7]   Small eigenvalues of large Hankel matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42) :7305-7315
[8]   Painleve VI and Hankel determinants for the generalized Jacobi weight [J].
Dai, D. ;
Zhang, L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (05)
[9]   The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painleve equation [J].
Filipuk, Galina ;
Van Assche, Walter ;
Zhang, Lun .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
[10]  
Ismail MouradE. H., 2005, ENCYCL MATH, V98