共 26 条
A novel deep learning model for fault diagnosis of rolling-element bearing based on convolution neural network and recurrent neural network
被引:5
作者:

Song, Xudong
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Jiaotong Univ, Comp & Commun Engn Inst, Dalian, Liaoning, Peoples R China Dalian Jiaotong Univ, Comp & Commun Engn Inst, Dalian, Liaoning, Peoples R China

Lyu, Xinran
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Jiaotong Univ, Software Technol Inst, Dalian, Liaoning, Peoples R China Dalian Jiaotong Univ, Comp & Commun Engn Inst, Dalian, Liaoning, Peoples R China

Sun, Shaocong
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Jiaotong Univ, Software Technol Inst, Dalian, Liaoning, Peoples R China Dalian Jiaotong Univ, Comp & Commun Engn Inst, Dalian, Liaoning, Peoples R China

Li, Changxian
论文数: 0 引用数: 0
h-index: 0
机构:
Dalian Jiaotong Univ, Sch Automat & Elect Engn, Dalian, Liaoning, Peoples R China Dalian Jiaotong Univ, Comp & Commun Engn Inst, Dalian, Liaoning, Peoples R China
机构:
[1] Dalian Jiaotong Univ, Comp & Commun Engn Inst, Dalian, Liaoning, Peoples R China
[2] Dalian Jiaotong Univ, Software Technol Inst, Dalian, Liaoning, Peoples R China
[3] Dalian Jiaotong Univ, Sch Automat & Elect Engn, Dalian, Liaoning, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Rolling-element bearing;
one-dimensional convolutional neural network;
long short-term memory;
gated recurrent unit;
fault diagnosis;
D O I:
10.1177/09544089231191042
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
Rolling bearings are critical components that are incredibly prone to failure in the operation of mechanical equipment. Due to the complexity of the actual working conditions, multiple types, positions and scales of bearings are problematic to accurately and completely classify using conventional classification methods. In this study, a novel end-to-end deep learning framework consisting of a one-dimensional convolutional neural network (1D-CNN) and a module fused by long short-term memory (LSTM) and gated recurrent unit (GRU) is proposed to diagnose bearing failures, thus solving the problem of the poor accuracy of traditional fault identification. First, 1D-CNN is used to extract local features from bearing data thanks to its excellent local feature extraction capabilities. Second, global features are extracted from bearing data using LSTM and GRU, and classification is performed with Softmax. Finally, the proposed model is evaluated using Case Western Reserve University and the University of Cincinnati data, with accuracy rates of 99.99% and 99.83%, respectively. The experimental results indicate that the proposed model has good feasibility and performance.
引用
收藏
页数:11
相关论文
共 26 条
[1]
A novel convolutional neural network with multiscale cascade midpoint residual for fault diagnosis of rolling bearings
[J].
Chao, Zhiqiang
;
Han, Tian
.
NEUROCOMPUTING,
2022, 506
:213-227

Chao, Zhiqiang
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China

Han, Tian
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2]
Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis
[J].
Huang, Ya-Jing
;
Liao, Ai-Hua
;
Hu, Ding-Yu
;
Shi, Wei
;
Zheng, Shu-Bin
.
MEASUREMENT,
2022, 203

Huang, Ya-Jing
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China

Liao, Ai-Hua
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China

Hu, Ding-Yu
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China
Shanghai Engn Res Ctr Railway Noise & Vibrat Contr, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China

Shi, Wei
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China

Zheng, Shu-Bin
论文数: 0 引用数: 0
h-index: 0
机构:
Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Urban Rail Transportat, Shanghai 201620, Peoples R China
[3]
End-to-end CNN plus LSTM deep learning approach for bearing fault diagnosis
[J].
Khorram, Amin
;
Khalooei, Mohammad
;
Rezghi, Mansoor
.
APPLIED INTELLIGENCE,
2021, 51 (02)
:736-751

Khorram, Amin
论文数: 0 引用数: 0
h-index: 0
机构:
WSE Co, Dept Mech Engn, Tehran 1416844816, Iran WSE Co, Dept Mech Engn, Tehran 1416844816, Iran

Khalooei, Mohammad
论文数: 0 引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept IT & Comp Engn, Tehran 158754413, Iran WSE Co, Dept Mech Engn, Tehran 1416844816, Iran

论文数: 引用数:
h-index:
机构:
[4]
1D convolutional neural networks and applications: A survey
[J].
Kiranyaz, Serkan
;
Avci, Onur
;
Abdeljaber, Osama
;
Ince, Turker
;
Gabbouj, Moncef
;
Inman, Daniel J.
.
MECHANICAL SYSTEMS AND SIGNAL PROCESSING,
2021, 151

Kiranyaz, Serkan
论文数: 0 引用数: 0
h-index: 0
机构:
Qatar Univ, Dept Elect Engn, Doha, Qatar Qatar Univ, Dept Elect Engn, Doha, Qatar

论文数: 引用数:
h-index:
机构:

Abdeljaber, Osama
论文数: 0 引用数: 0
h-index: 0
机构:
Linnaeus Univ, Dept Bldg Technol, Vaxjo, Sweden Qatar Univ, Dept Elect Engn, Doha, Qatar

Ince, Turker
论文数: 0 引用数: 0
h-index: 0
机构:
Izmir Univ Econ, Elect & Elect Engn Dept, Izmir, Turkey Qatar Univ, Dept Elect Engn, Doha, Qatar

Gabbouj, Moncef
论文数: 0 引用数: 0
h-index: 0
机构:
Tampere Univ, Dept Comp Sci, Tampere, Finland Qatar Univ, Dept Elect Engn, Doha, Qatar

Inman, Daniel J.
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA Qatar Univ, Dept Elect Engn, Doha, Qatar
[5]
An overview of dynamic modeling of rolling-element bearings
[J].
Kumbhar S.G.
;
Sudhagar P E.
;
Desavale R.G.
.
Noise and Vibration Worldwide,
2021, 52 (1-2)
:3-18

Kumbhar S.G.
论文数: 0 引用数: 0
h-index: 0
机构:
School of Mechanical and Building Sciences, Vellore Institute of Technology, Vellore, Tamilnadu
Department of Automobile Engineering, Rajarambapu Institute of Technology, Shivaji University, Rajaramnagar, Sakharale Sangli, Kolhapur, Maharashtra School of Mechanical and Building Sciences, Vellore Institute of Technology, Vellore, Tamilnadu

Sudhagar P E.
论文数: 0 引用数: 0
h-index: 0
机构:
School of Mechanical and Building Sciences, Vellore Institute of Technology, Vellore, Tamilnadu School of Mechanical and Building Sciences, Vellore Institute of Technology, Vellore, Tamilnadu

Desavale R.G.
论文数: 0 引用数: 0
h-index: 0
机构:
Department of Mechanical Engineering, Rajarambapu Institute of Technology, Shivaji University, Rajaramnagar, Sakharale Sangli, Kolhapur, Maharashtra School of Mechanical and Building Sciences, Vellore Institute of Technology, Vellore, Tamilnadu
[6]
Gradient-based learning applied to document recognition
[J].
Lecun, Y
;
Bottou, L
;
Bengio, Y
;
Haffner, P
.
PROCEEDINGS OF THE IEEE,
1998, 86 (11)
:2278-2324

Lecun, Y
论文数: 0 引用数: 0
h-index: 0
机构:
AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA

Bottou, L
论文数: 0 引用数: 0
h-index: 0
机构: AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA

Bengio, Y
论文数: 0 引用数: 0
h-index: 0
机构: AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA

Haffner, P
论文数: 0 引用数: 0
h-index: 0
机构: AT&T Bell Labs, Res, Speech & Image Proc Serv Res Lab, Red Bank, NJ 07701 USA
[7]
Rolling bearing fault diagnosis by Markov transition field and multi-dimension convolutional neural network
[J].
Lei, Chunli
;
Xue, Linlin
;
Jiao, Mengxuan
;
Zhang, Huqiang
;
Shi, Jiashuo
.
MEASUREMENT SCIENCE AND TECHNOLOGY,
2022, 33 (11)

Lei, Chunli
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
Lanzhou Univ Technol, Key Lab Digital Mfg Technol & Applicat, Minist Educ, Lanzhou 730050, Peoples R China Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China

Xue, Linlin
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China

Jiao, Mengxuan
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China

Zhang, Huqiang
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China

Shi, Jiashuo
论文数: 0 引用数: 0
h-index: 0
机构:
Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[8]
An improved local mean decomposition method based on improved composite interpolation envelope and its application in bearing fault feature extraction
[J].
Li, Xiang
;
Ma, Jun
;
Wang, Xiaodong
;
Wu, Jiande
;
Li, Zhuorui
.
ISA TRANSACTIONS,
2020, 97
:365-383

Li, Xiang
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Yunnan, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China

Ma, Jun
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Yunnan, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China

Wang, Xiaodong
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Yunnan, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China

Wu, Jiande
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Yunnan, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China

Li, Zhuorui
论文数: 0 引用数: 0
h-index: 0
机构:
Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
Engn Res Ctr Mineral Pipeline Transportat YN, Kunming 650500, Yunnan, Peoples R China Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
[9]
A Data-Driven Realization of the Control-Performance-Oriented Process Monitoring System
[J].
Luo, Hao
;
Yin, Shen
;
Liu, Tianyu
;
Khan, Abdul Qayyum
.
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
2020, 67 (01)
:521-530

Luo, Hao
论文数: 0 引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China

Yin, Shen
论文数: 0 引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China

Liu, Tianyu
论文数: 0 引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China

论文数: 引用数:
h-index:
机构:
[10]
Bayes-DCGRU with bayesian optimization for rolling bearing fault diagnosis
[J].
Ma Jiaocheng
;
Shang Jinan
;
Zhao Xin
;
Zhong Peng
.
APPLIED INTELLIGENCE,
2022, 52 (10)
:11172-11183

Ma Jiaocheng
论文数: 0 引用数: 0
h-index: 0
机构:
Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
Key Lab Lifting Equipments Safety Technol State M, Shenyang 110819, Peoples R China Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China

Shang Jinan
论文数: 0 引用数: 0
h-index: 0
机构:
Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
North Automat Control Technol Inst, Taiyuan 030000, Peoples R China Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China

Zhao Xin
论文数: 0 引用数: 0
h-index: 0
机构:
Key Lab Lifting Equipments Safety Technol State M, Shenyang 110819, Peoples R China
Liaoning Prov Inst Safety Sci, Shenyang 110004, Peoples R China Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China

Zhong Peng
论文数: 0 引用数: 0
h-index: 0
机构:
Shenyang Special Equipment Testing Res Inst, Shenyang 110035, Peoples R China Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China