Diurnal to interannual variability of low-level cloud cover over western equatorial Africa in May-October

被引:6
作者
Moron, Vincent [1 ,2 ]
Camberlin, P. [3 ]
Aellig, R. [4 ]
Champagne, O. [5 ]
Fink, A. H. [4 ]
Knippertz, P. [4 ]
Philippon, N. [5 ]
机构
[1] Aix Marseille Univ, Coll France CEREGE, CNRS, IRD,INRAE, Aix En Provence, France
[2] Columbia Univ, Int Res Inst Climate & Soc, Lamont Doherty Earth Observ, Palisades, NY USA
[3] Univ Bourgogne Franche Comte, Biogeosci, CRC, CNRS, Dijon, France
[4] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Karlsruhe, Germany
[5] UGA, Inst Geosci Environm, Grenoble INP, CNRS,IRD, Grenoble, France
关键词
atmosphere; cold tongue; ERA5; stratiform cloud; surface observation; SEA-SURFACE TEMPERATURE; ATMOSPHERIC CIRCULATION; HOMOGENEITY TEST; SEASONAL CYCLE; PART II; OCEAN; ATLANTIC; STRATOCUMULUS; DYNAMICS; PRECIPITATION;
D O I
10.1002/joc.8188
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study examines the diurnal to interannual variations of the stratiform cloud cover in May-October (1971-2019) from a 3-hourly station database and from ERA5 reanalyses over western equatorial Africa (WEA). The main diurnal variations of the local-scale fraction and genus of stratiform clouds are synthesized into three canonical diurnal types (i.e., "clear," "clear afternoon," "cloudy" days). The interannual variations of frequencies of the three diurnal types during the cloudiest months (JJAS) are mostly associated with two main mechanisms: a meridional shallow overturning cell associating more "cloudy" and less "clear" and "clear afternoon" days to anomalous southerlies below 900 hPa over and around WEA, anomalous ascent around 5 degrees-7 degrees N, anomalous northerlies between 875 and 700 hPa, and anomalous subsidence over the equatorial Atlantic. This circulation is strongly related to interannual variations of the equatorial Atlantic upwelling (i.e., more clouds when the upwelling is strong) associated with a meridional shift of the Intertropical Convergence Zone over the Tropical Atlantic and adjacent continents. The second mechanism operates mostly in the zonal direction and involves again the coupled ocean-atmosphere system over the equatorial Atlantic, but also the remote El Nino-Southern Oscillation (ENSO). An anomalously cold equatorial Atlantic drives increased low-level westerlies toward the Congo Basin. Warm ENSO events promote broad warm and easterly anomalies in the middle and upper troposphere, which increase the local static stability, and thus the local stratiform cloud cover over WEA. The present study suggests new mechanisms responsible for interannual variations of stratiform clouds in WEA, thus providing avenues of future research regarding the stability of the stratiform cloud deck under the ongoing differential warming of tropical ocean and land masses.
引用
收藏
页码:6038 / 6064
页数:27
相关论文
共 81 条
[41]   Seasonal influence of the sea surface temperature on the low atmospheric circulation and precipitation in the eastern equatorial Atlantic [J].
Meynadier, Remi ;
de Coetlogon, Gaelle ;
Leduc-Leballeur, Marion ;
Eymard, Laurence ;
Janicot, Serge .
CLIMATE DYNAMICS, 2016, 47 (3-4) :1127-1142
[42]  
MICHELANGELI PA, 1995, J ATMOS SCI, V52, P1237, DOI 10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO
[43]  
2
[44]   EQUATORIAL ADJUSTMENT IN EASTERN ATLANTIC [J].
MOORE, D ;
HISARD, P ;
MCCREARY, J ;
MERLE, J ;
OBRIEN, J ;
PICAUT, J ;
VERSTRAETE, JM ;
WUNSCH, C .
GEOPHYSICAL RESEARCH LETTERS, 1978, 5 (08) :637-640
[45]   The Congo basin zonal overturning circulation [J].
Neupane, Naresh .
ADVANCES IN ATMOSPHERIC SCIENCES, 2016, 33 (06) :767-782
[46]  
Nicholson SE, 2003, J CLIMATE, V16, P1013, DOI 10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO
[47]  
2
[48]  
Norris JR, 1998, J CLIMATE, V11, P383, DOI 10.1175/1520-0442(1998)011<0383:LCTOTO>2.0.CO
[49]  
2
[50]  
NORRIS JR, 1994, J CLIMATE, V7, P1915, DOI 10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO