POSITIVE STEADY-STATE SOLUTIONS FOR A WATER-VEGETATION MODEL WITH THE INFILTRATION FEEDBACK EFFECT

被引:20
作者
Guo, Gaihui [1 ]
Zhao, Shihan [1 ]
Wang, Jingjing [1 ]
Gao, Yuanxiao [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Shaanxi, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 01期
基金
美国国家科学基金会;
关键词
Water-vegetation model; infiltration feedback; Turing instability; pos-itive steady-state solution; bifurcation; vegetation pattern; DIFFUSION; DYNAMICS; PATTERN; BIFURCATION;
D O I
10.3934/dcdsb.2023101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, a water-vegetation model with the infiltration feedback effect is considered. Firstly, through the linear stability analysis, we get the parameter area where Turing instability can occur. Next, by maximum principle, a priori estimates for positive steady-state solutions are obtained and sufficient conditions for the nonexistence of nonconstant positive steadystate solution are given. Moreover, the steady-state bifurcations at both simple and double eigenvalues are analyzed separately. We establish the global structure of the bifurcation from simple eigenvalues and get the sufficient condition to determine the bifurcation direction. For the case of double eigenvalues, the techniques of space decomposition and the implicit function theorem are used. Finally, we verify and supplement the theoretical analysis results with numerical simulations.
引用
收藏
页码:426 / 458
页数:33
相关论文
共 30 条
[1]   Pulse Solutions for an Extended Klausmeier Model with Spatially Varying Coefficients [J].
Bastiaansen, Robbin ;
Chirilus-Bruckner, Martina ;
Doelman, Arjen .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01) :1-57
[2]  
Crandall M.G., 1971, J. Funct. Anal., V8, P321, DOI 10.1016/0022-1236(71)90015-2
[3]   Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas [J].
Donzelli, D. ;
De Michele, C. ;
Scholes, R. J. .
JOURNAL OF THEORETICAL BIOLOGY, 2013, 332 :181-190
[4]   Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal [J].
Eigentler, Lukas ;
Sherratt, Jonathan A. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (03) :739-763
[5]   Dynamics and spatial organization of plant communities in water-limited systems [J].
Gilad, E. ;
Shachak, M. ;
Meron, E. .
THEORETICAL POPULATION BIOLOGY, 2007, 72 (02) :214-230
[6]   Global Bifurcation and Structure of Turing Patterns in the 1-D Lengyel–Epstein Model [J].
Jaeduck Jang ;
Wei-Ming Ni ;
Moxun Tang .
Journal of Dynamics and Differential Equations, 2004, 16 (2) :297-320
[7]   Regular and irregular patterns in semiarid vegetation [J].
Klausmeier, CA .
SCIENCE, 1999, 284 (5421) :1826-1828
[8]   Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay [J].
Li, Jing ;
Sun, Gui-Quan ;
Guo, Zun-Guang .
STUDIES IN APPLIED MATHEMATICS, 2022, 148 (04) :1519-1542
[9]   Nonlocal interactions between vegetation induce spatial patterning [J].
Liang, Juan ;
Liu, Chen ;
Sun, Gui-Quan ;
Li, Li ;
Zhang, Lai ;
Hou, Meiting ;
Wang, Hao ;
Wang, Zhen .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 428
[10]   Bounds for the steady-state Sel'kov model for arbitrary p in any number of dimensions [J].
Lieberman, GM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (05) :1400-1406