Extracting accurate parameters of photovoltaic cell models via elite learning adaptive differential evolution

被引:42
作者
Gu, Zaiyu [1 ]
Xiong, Guojiang [1 ,2 ]
Fu, Xiaofan [1 ]
Mohamed, Ali Wagdy [3 ,4 ]
Al-Betar, Mohammed Azmi [5 ]
Chen, Hao [6 ,7 ]
Chen, Jun [8 ]
机构
[1] Guizhou Univ, Coll Elect Engn, Guizhou Key Lab Intelligent Technol Power Syst, Guiyang 550025, Peoples R China
[2] Minist Educ, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
[3] Cairo Univ, Fac Grad Studies Stat Res, Operat Res Dept, Giza 12613, Egypt
[4] Amer Univ Cairo, Sch Sci & Engn, Dept Math & Actuarial Sci, Cairo, Egypt
[5] Ajman Univ, Coll Engn & Informat Technol, Artificial Intelligence Res Ctr AIRC, Ajman, U Arab Emirates
[6] Fujian Prov Key Lab Intelligent Identificat, Quanzhou 362216, Peoples R China
[7] Control Complex Dynam Syst, Quanzhou 362216, Peoples R China
[8] Oakland Univ, Dept Elect & Comp Engn, Rochester, MI 48309 USA
基金
中国国家自然科学基金;
关键词
Adaptive strategy; Differential evolution; Photovoltaic; Parameter extraction; Population size reduction; BACKTRACKING SEARCH ALGORITHM; ARTIFICIAL BEE COLONY; LAMBERT W-FUNCTION; SOLAR-CELLS; GLOBAL OPTIMIZATION; IDENTIFICATION; MODULES;
D O I
10.1016/j.enconman.2023.116994
中图分类号
O414.1 [热力学];
学科分类号
摘要
Photovoltaic power generation is becoming increasingly vital as the global call for environmental protection rises. Establishing an equivalent model for a photovoltaic cell and extracting accurate parameters of the model have a crucial role in supporting the fault diagnosis, performance analysis, and maximum power point tracking of the photovoltaic system. To better tackle this problem, an improved algorithm, i.e., Elite Learning Adaptive Differential Evolution (ELADE) is proposed. Four strategies, including the parameters adaptive strategy, elite learning strategy, chaotic last-place elimination strategy, and population size reduction strategy are combined to boost the exploitation process of differential evolution to effectively balance the ability to avoid local optimum and accelerate convergence speed. The suggested ELADE is applied to five photovoltaic cell models. Experi-mental results show that the maximum population size affects the performance of ELADE, and a recommended value 50 can promote it to achieve the most accurate and reliable parameters in comparison with other peer algorithms. Its superiority is further confirmed by two statistical test methods, including the Friedman for mean root mean square error (RMSE) values and Wilcoxon's rank-sum of RMSE values for each independent run. Besides, the influence of different strategies on ELADE is also empirically investigated, showing that the pa-rameters adaptive strategy contributes the most.
引用
收藏
页数:25
相关论文
共 85 条
[51]  
Ocaya R.O., 2021, NEW SYMMETRY BASED E, DOI [10.1016/j.measurement.2021.110105, DOI 10.1016/J.MEASUREMENT.2021.110105]
[52]   Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm [J].
Oliv, Diego ;
Abd El Aziz, Mohamed ;
Hassanien, Aboul Ella .
APPLIED ENERGY, 2017, 200 :141-154
[53]   Parameter identification of solar cells using artificial bee colony optimization [J].
Oliva, Diego ;
Cuevas, Erik ;
Pajares, Gonzalo .
ENERGY, 2014, 72 :93-102
[54]   Differential evolution with dynamic control factors for parameter estimation of photovoltaic models [J].
Parida, Shubhranshu Mohan ;
Rout, Pravat Kumar .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) :330-343
[55]   Mathematical modeling framework of a PV model using novel differential evolution algorithm [J].
Patro, Sanat Kumar ;
Saini, R. P. .
SOLAR ENERGY, 2020, 211 :210-226
[56]   Using a novel optimization algorithm for parameter extraction of photovoltaic cells and modules [J].
Pourmousa, Nafiseh ;
Ebrahimi, S. Mohammadreza ;
Malekzadeh, Milad ;
Gordillo, Francisco .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04)
[57]   Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization [J].
Qin, A. K. ;
Huang, V. L. ;
Suganthan, P. N. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) :398-417
[58]   Bacterial Foraging Algorithm based solar PV parameter estimation [J].
Rajasekar, N. ;
Kumar, Neeraja Krishna ;
Venugopalan, Rini .
SOLAR ENERGY, 2013, 97 :255-265
[59]  
Rasheed M, 2021, J PHYS C SER, V1795
[60]   Estimating Parameters of Photovoltaic Models Using Accurate Turbulent Flow of Water Optimizer [J].
Said, Mokhtar ;
Shaheen, Abdullah M. ;
Ginidi, Ahmed R. ;
El-Sehiemy, Ragab A. ;
Mahmoud, Karar ;
Lehtonen, Matti ;
Darwish, Mohamed M. E. .
PROCESSES, 2021, 9 (04)