Multiple Positive Bound State Solutions for Fractional Schrodinger-Poisson System with Critical Nonlocal Term

被引:4
作者
He, Xiaoming [1 ]
Wang, Da-Bin [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
关键词
Fractional Schrodinger-Poisson system; Nonlocal critical exponent; Bound state solutions; Variational methods; SIGN-CHANGING SOLUTIONS; BUMP SOLUTIONS; GROUND-STATE; EXISTENCE; EQUATION; WAVES;
D O I
10.1007/s12220-023-01247-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the fractional Schrodinger-Poisson system with nonlocal critical exponent { (-Delta)(s)u + (V(x) + lambda)u = phi|u|(2)*(s -3) u, x is an element of R-3, (-Delta)(s) phi = vertical bar u vertical bar(2*s) (-1), x is an element of R-3, where s is an element of (1/2, 3/4), 2*(s) = 6/3-2s is the fractional critical Sobolev exponent and V( x) is an element of L-3/2s (R-3) is a nonnegative potential, combining with Variational methods and Brouwer degree theory, we investigate the existence and multiplicity of positive bound solutions if lambda > 0 is small. These results extend and improve some recent works with nonlocal critical exponent.
引用
收藏
页数:29
相关论文
共 56 条
[1]   EXISTENCE OF POSITIVE MULTI-BUMP SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM IN R3 [J].
Alves, Claudianor O. ;
Yang, Minbo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) :5881-5910
[2]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[3]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[4]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[5]  
[Anonymous], 2008, VARIATIONAL METHODS
[6]  
[Anonymous], 1997, Minimax Theorems
[7]   On a system involving a critically growing nonlinearity [J].
Azzoillini, Antonio ;
d'Avenia, Pietro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) :433-438
[8]   Concentration and compactness in nonlinear Schrodinger-Poisson system with a general nonlinearity [J].
Azzollini, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) :1746-1763
[9]   Generalized Schrodinger-Newton system in dimension N ≥ 3: Critical case [J].
Azzollini, Antonio ;
d'Avenia, Pietro ;
Vaira, Giusi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :531-552
[10]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117