High-efficient and scalable solar-driven MOF-based water collection unit: From module design to concrete implementation

被引:35
作者
Luo, Fan [1 ]
Liang, Xianghui [1 ]
Chen, Weicheng [1 ]
Wang, Shuangfeng [1 ]
Gao, Xuenong [1 ]
Zhang, Zhengguo [1 ]
Fang, Yutang [1 ]
机构
[1] South China Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Atmospheric water harvesting; Hybridized MOF skeleton; Monolithic adsorbent; Light -heat conversion; High -efficient water collection; METAL-ORGANIC FRAMEWORKS; ADSORPTION;
D O I
10.1016/j.cej.2023.142891
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
MOF-based atmospheric water harvesting technology is a straightforward and practical strategy for producing safe drinking water. However, separate designs of high-adsorption desiccant skeletons and efficient photothermal layers are required to maximize water production efficiency. This work presents an integrated design of a multifunctional monolithic adsorbent through the layer-by-layer assembly of chitosan/polydopamine layers and hybridized MOF backbones on a glass fiber support. The hydrophilic hybridized MOF consisting of MIL-160(Al) and MOF-303 obtains the higher specific surface area (917.59 m2/g) and pore volume (0.44 cm3/g) through morphological reorganization for facilitating water capture and storage capacity. Especially in arid environments (RH <= 30 %), the resultant MOF has a superior moisture adsorption capacity (0.44 g/g) than parental MOF and other potential MOFs. The polymeric photothermal layer of adsorbent enables high solar thermal conversion in sunlight to assist the release of collected water. With fast sorption-desorption kinetics, an impressive outdoor water production of 0.94 g/g per day is observed in the designed monolithic adsorbent, indicating its enormous potential for safe, sustainable and scalable atmospheric water collection technology.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Achieving Ultrahigh Efficiency Vacancy-Ordered Double Perovskite Microcrystals via Ionic Liquids [J].
Cao, Mengyan ;
Li, Zhilin ;
Zhao, Xiujian ;
Gong, Xiao .
SMALL, 2022, 18 (44)
[2]   Ultrafast water harvesting and transport in hierarchical microchannels [J].
Chen, Huawei ;
Ran, Tong ;
Gan, Yang ;
Zhou, Jiajia ;
Zhang, Yi ;
Zhang, Liwen ;
Zhang, Deyuan ;
Jiang, Lei .
NATURE MATERIALS, 2018, 17 (10) :935-+
[3]   Metal Cation Detection in Drinking Water [J].
Dalmieda, Johnson ;
Kruse, Peter .
SENSORS, 2019, 19 (23)
[4]   Adsorption-based atmospheric water harvesting [J].
Ejeian, M. ;
Wang, R. Z. .
JOULE, 2021, 5 (07) :1678-1703
[5]   Practical water production from desert air [J].
Fathieh, Farhad ;
Kalmutzki, Markus J. ;
Kapustin, Eugene A. ;
Waller, Peter J. ;
Yang, Jingjing ;
Yaghi, Omar M. .
SCIENCE ADVANCES, 2018, 4 (06)
[6]   Water Adsorption in Porous Metal-Organic Frameworks and Related Materials [J].
Furukawa, Hiroyasu ;
Gandara, Felipe ;
Zhang, Yue-Biao ;
Jiang, Juncong ;
Queen, Wendy L. ;
Hudson, Matthew R. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (11) :4369-4381
[7]   Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science [J].
Gordeeva, Larisa G. ;
Tu, Yao Dong ;
Pan, Quanwen ;
Palash, M. L. ;
Saha, Bidyut B. ;
Aristov, Yuri I. ;
Wang, Ru Zhu .
NANO ENERGY, 2021, 84
[8]   Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting [J].
Hanikel, Nikita ;
Pei, Xiaokun ;
Chheda, Saumil ;
Lyu, Hao ;
Jeong, WooSeok ;
Sauer, Joachim ;
Gagliardi, Laura ;
Yaghi, Omar M. .
SCIENCE, 2021, 374 (6566) :454-+
[9]   Metal-organic frameworks for solar-driven atmosphere water harvesting [J].
Hu, Yue ;
Ye, Zhizhen ;
Peng, Xinsheng .
CHEMICAL ENGINEERING JOURNAL, 2023, 452
[10]   Electrophoretic fabrication of a robust chitosan/polyethylene glycol/polydopamine composite film for UV-shielding application [J].
Huang, Bo-Han ;
Li, Shih-Yuan ;
Chiou, Yu-Jie ;
Chojniak, David ;
Chou, Shih-Cheng ;
Wong, Vienna Chi Man ;
Chen, San-Yuan ;
Wu, Pu-Wei .
CARBOHYDRATE POLYMERS, 2021, 273