Spectral Radius and Fractional Perfect Matchings in Graphs

被引:3
作者
Pan, Yingui [1 ]
Liu, Chang [2 ]
机构
[1] 63763 Army PLA, Lingshui 572400, Peoples R China
[2] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
关键词
Spectral radius; Fractional perfect matching; P->= 2-factor; EIGENVALUES; NUMBER; SIZE;
D O I
10.1007/s00373-023-02652-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an n-vertex graph G, a fractional matching of G is a function f giving each edge a real number in [0, 1] such that Sigma(e is an element of Gamma (v)) f (e) <= 1 for each vertex v is an element of V(G), where Gamma(v) is the set of edges incident to v. A fractional perfect matching is a fractional matching f with Sigma(e is an element of E(G)) f (e) = n/2. In this paper, we establish tight lower bounds on the size and the spectral radius of G to guarantee that G has a fractional perfect matching, respectively. In addition, we investigate the relationship between fractional perfect matching and P->= 2-factor, and give some sufficient conditions for a graph to have a P->= 2-factor.
引用
收藏
页数:11
相关论文
共 23 条
[1]  
Akiyama J., 1980, TRU Math, V16, P97
[2]   Sharp lower bounds on the fractional matching number [J].
Behrend, Roger E. ;
Suil, O. ;
West, Douglas B. .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :272-274
[3]   Eigenvalues and perfect matchings [J].
Brouwer, AE ;
Haemers, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 :155-162
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]   The difference and ratio of the fractional matching number and the matching number of graphs [J].
Choi, Ilkyoo ;
Kim, Jaehoon ;
Suil, O. .
DISCRETE MATHEMATICS, 2016, 339 (04) :1382-1386
[6]  
Cioaba S.M., 2005, C. R. Math. Acad. Sci. Soc. R. Can., V27, P101
[7]   Large matchings from eigenvalues [J].
Cioaba, Sebastian M. ;
Gregory, David A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :308-317
[8]   Matchings in regular graphs from eigenvalues [J].
Cioaba, Sebastian M. ;
Gregory, David A. ;
Haemers, Willem H. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) :287-297
[9]   The spanning k-trees, perfect matchings and spectral radius of graphs [J].
Fan, Dandan ;
Goryainov, Sergey ;
Huang, Xueyi ;
Lin, Huiqiu .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) :7264-7275
[10]   Spectral radius of graphs with given matching number [J].
Feng, Lihua ;
Yu, Guihai ;
Zhang, Xiao-Dong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :133-138