MIU-Net: MIX-Attention and Inception U-Net for Histopathology Image Nuclei Segmentation

被引:4
|
作者
Li, Jiangqi [1 ]
Li, Xiang [2 ]
机构
[1] Bohai Univ, Coll Math Sci, Jinzhou 121000, Peoples R China
[2] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150001, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
nuclei segmentation; histopathology image; attention mechanism; efficient network;
D O I
10.3390/app13084842
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the medical field, hematoxylin and eosin (H&E)-stained histopathology images of cell nuclei analysis represent an important measure for cancer diagnosis. The most valuable aspect of the nuclei analysis is the segmentation of the different nuclei morphologies of different organs and subsequent diagnosis of the type and severity of the disease based on pathology. In recent years, deep learning techniques have been widely used in digital histopathology analysis. Automated nuclear segmentation technology enables the rapid and efficient segmentation of tens of thousands of complex and variable nuclei in histopathology images. However, a challenging problem during nuclei segmentation is the blocking of cell nuclei, overlapping, and background complexity of the tissue fraction. To address this challenge, we present MIU-net, an efficient deep learning network structure for the nuclei segmentation of histopathology images. Our proposed structure includes two blocks with modified inception module and attention module. The advantage of the modified inception module is to balance the computation and network performance of the deeper layers of the network, combined with the convolutional layer using different sizes of kernels to learn effective features in a fast and efficient manner to complete kernel segmentation. The attention module allows us to extract small and fine irregular boundary features from the images, which can better segment cancer cells that appear disorganized and fragmented. We test our methodology on public kumar datasets and achieve the highest AUC score of 0.92. The experimental results show that the proposed method achieves better performance than other state-of-the-art methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dual Encoder Attention U-net for nuclei segmentation
    Vahadane, Abhishek
    Atheeth, B.
    Majumdar, Shantanu
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3205 - 3208
  • [2] IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation
    Chen, Siyuan
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [3] OAU-net: Outlined Attention U-net for biomedical image segmentation
    Song, Haojie
    Wang, Yuefei
    Zeng, Shijie
    Guo, Xiaoyan
    Li, Zheheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [4] IRAU-Net: Inception Residual Attention U-Net in Adversarial Network for Cardiac MRI Segmentation
    Rostami, Maryam Talebi
    Motamedi, Seyed Ahmad
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2025, 19 (01) : 260 - 272
  • [5] Study on Echocardiographic Image Segmentation Based on Attention U-Net
    Wang, Kai
    Zhang, Jiwei
    Hachiya, Hirotaka
    Wu, Haiyuan
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1091 - 1096
  • [6] DRA U-Net: An Attention based U-Net Framework for 2D Medical Image Segmentation
    Zhang, Xian
    Feng, Ziyuan
    Zhong, Tianchi
    Shen, Sicheng
    Zhang, Ruolin
    Zhou, Lijie
    Zhang, Bo
    Wang, Wendong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3936 - 3942
  • [7] Inception U-Net Architecture for Semantic Segmentation to Identify Nuclei in Microscopy Cell Images
    Punn, Narinder Singh
    Agarwal, Sonali
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (01)
  • [8] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [9] Attention-inception-based U-Net for retinal vessel segmentation with advanced residual
    Wang, Huadeng
    Xu, Guang
    Pan, Xipeng
    Liu, Zhenbing
    Tang, Ningning
    Lan, Rushi
    Luo, Xiaonan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 98
  • [10] Hybrid dilation and attention residual U-Net for medical image segmentation
    Wang, Zekun
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134