Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge

被引:22
作者
Haaksman, V. A. [1 ]
Schouteren, M. [1 ]
van Loosdrecht, M. C. M. [1 ]
Pronk, M. [1 ,2 ]
机构
[1] Delft Univ Technol, Fac Appl Sci, Dept Biotechnol, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Royal HaskoningDHV, Laan 1914 35, NL-3800 AL Amersfoort, Netherlands
关键词
aerobic granular sludge; PHA; bottom; -feeding; anaerobic selector; continuous flow; BIOLOGICAL PHOSPHORUS REMOVAL; GLYCOGEN-ACCUMULATING ORGANISMS; METABOLIC MODEL; SPHERICAL BIOFILMS; RETENTION TIME; BATCH TESTS; SCALE; STOICHIOMETRY; KINETICS; PERFORMANCE;
D O I
10.1016/j.watres.2023.119803
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
There is a growing interest to implement aerobic granular sludge (AGS) in existing conventional activated sludge (CAS) systems with a continuous flow-through configuration. The mode of anaerobic contact of raw sewage with the sludge is an important aspect in the adaptation of CAS systems to accommodate AGS. It remains unclear how the distribution of substrate over the sludge by a conventional anaerobic selector compares to the distribution via bottom-feeding applied in sequencing batch reactors (SBRs). This study investigated the effect of the anaerobic contact mode on the substrate (and storage) distribution by operating two lab-scale SBRs; one with the tradi-tional bottom-feeding through a settled sludge bed similar to full-scale AGS systems, and one where the synthetic wastewater was fed as a pulse at the start of the anaerobic phase while the reactor was mixed through sparging of nitrogen gas (mimicking a plug-flow anaerobic selector in continuous flow-through systems). The distribution of the substrate over the sludge particle population was quantified via PHA analysis, combined with the obtained granule size distribution. Bottom-feeding was found to primarily direct substrate towards the large granular size classes (i.e. large volume and close to the bottom), while completely mixed pulse-feeding gives a more equal distribution of substrate over all granule sizes (i.e. surface area dependant). The anaerobic contact mode directly controls the substrate distribution over the different granule sizes, irrespective of the solids retention time of a granule as an entity. Preferential feeding of the larger granules will enhance and stabilise the granulation compared to pulse-feeding, certainly under less advantageous conditions imposed by real sewage.
引用
收藏
页数:12
相关论文
共 55 条
[1]   Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage [J].
Acevedo, B. ;
Oehmen, A. ;
Carvalho, G. ;
Seco, A. ;
Borras, L. ;
Barat, R. .
WATER RESEARCH, 2012, 46 (06) :1889-1900
[2]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[3]   Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure [J].
Bassin, J. P. ;
Pronk, M. ;
Muyzer, G. ;
Kleerebezem, R. ;
Dezotti, M. ;
van Loosdrecht, M. C. M. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (22) :7942-7953
[4]   Aerobic granulation in a sequencing batch airlift reactor [J].
Beun, JJ ;
van Loosdrecht, MCM ;
Heijnen, JJ .
WATER RESEARCH, 2002, 36 (03) :702-712
[5]   Impact of excessive aeration on biological phosphorus removal from wastewater [J].
Brdjanovic, D ;
Slamet, A ;
van Loosdrecht, MCM ;
Hooijmans, CM ;
Alaerts, GJ ;
Heijnen, JJ .
WATER RESEARCH, 1998, 32 (01) :200-208
[6]   Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation [J].
Crocetti, GR ;
Hugenholtz, P ;
Bond, PL ;
Schuler, A ;
Keller, J ;
Jenkins, D ;
Blackall, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (03) :1175-1182
[7]   Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes [J].
Crocetti, GR ;
Banfield, JF ;
Keller, J ;
Bond, PL ;
Blackall, LL .
MICROBIOLOGY-SGM, 2002, 148 :3353-3364
[8]  
Cussler E.L, 2009, CAMBRIDGE SERIES CHE, Vthird, DOI [10.1017/CBO9780511805134, DOI 10.1017/CBO9780511805134]
[9]   The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:: Development and evaluation of a more comprehensive probe set [J].
Daims, H ;
Brühl, A ;
Amann, R ;
Schleifer, KH ;
Wagner, M .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1999, 22 (03) :434-444
[10]   Selection of slow growing organisms as a means for improving aerobic granular sludge stability [J].
de Kreuk, MK ;
van Loosdrecht, MCM .
WATER SCIENCE AND TECHNOLOGY, 2004, 49 (11-12) :9-17