Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics

被引:138
作者
Han, Im Kyung [1 ]
Song, Kang-Il [2 ]
Jung, Sang-Mun [1 ]
Jo, Yeonggwon [3 ]
Kwon, Jaesub [1 ]
Chung, Taehun [1 ]
Yoo, Surim [3 ]
Jang, Jinah [3 ,4 ,5 ,6 ]
Kim, Yong-Tae [1 ]
Hwang, Dong Soo [3 ,6 ,7 ]
Kim, Youn Soo [1 ,3 ,8 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[2] Daegu Gyeongbuk Med Innovat Fdn, Med Device Dev Ctr, Daegu 41061, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Sch Interdisciplinary Biosci & Bioengn, Pohang 37673, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[5] Pohang Univ Sci & Technol POSTECH, Dept Convergence IT Engn, Pohang 37673, South Korea
[6] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
[7] Pohang Univ Sci & Technol POSTECH, Div Environm Sci & Engn, Pohang 37673, South Korea
[8] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
adhesive hydrogels; bioelectronics; conductive hydrogels; electrode-tissue interfaces; viscoelastic hydrogels; PERIPHERAL-NERVE; HIGH-QUALITY; ABSORPTION-SPECTROSCOPY; CARBON NANOTUBES; LAYER GRAPHENE; STRAIN SENSORS; GRAPHITE; EXFOLIATION; OXIDE; NANOMATERIALS;
D O I
10.1002/adma.202203431
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a new class of materials, implantable flexible electrical conductors have recently been developed and applied to bioelectronics. An ideal electrical conductor requires high conductivity, tissue-like mechanical properties, low toxicity, reliable adhesion to biological tissues, and the ability to maintain its shape in wet physiological environments. Despite significant advances, electrical conductors that satisfy all these requirements are insufficient. Herein, a facile method for manufacturing a new conductive hydrogels through the simultaneous exfoliation of graphite and polymerization of zwitterionic monomers triggered by microwave irradiation is introduced. The mechanical properties of the obtained conductive hydrogel are similar to those of living tissue, which is ideal as a bionic adhesive for minimizing contact damage due to mechanical mismatches between hard electronics and soft tissues. Furthermore, it exhibits excellent adhesion performance, electrical conductivity, non-swelling, and high conformability in water. Excellent biocompatibility of the hydrogel is confirmed through a cytotoxicity test using C2C12 cells, a biocompatibility test on rat tissues, and their histological analysis. The hydrogel is then implanted into the sciatic nerve of a rat and neuromodulation is demonstrated through low-current electrical stimulation. This hydrogel demonstrates a tissue-like extraneuronal electrode, which possesses high conformability to improve the tissue-electronics interfaces, promising next-generation bioelectronics applications.
引用
收藏
页数:16
相关论文
共 90 条
[21]   Liquid-to-Solid Phase Transitions of Imidazolium-Based Zwitterionic Polymers Induced by Hofmeister Anions [J].
Han, Im Kyung ;
Han, Jihoon ;
Kim, Youn Soo .
CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (14) :1897-1900
[22]   Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement [J].
Han, Im Kyung ;
Chung, Taehun ;
Han, Jihoon ;
Kim, Youn Soo .
NANO CONVERGENCE, 2019, 6 (1)
[23]   Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body [J].
Hayashi, Kaori ;
Okamoto, Fumiki ;
Hoshi, Sujin ;
Katashima, Takuya ;
Zujur, Denise C. ;
Li, Xiang ;
Shibayama, Mitsuhiro ;
Gilbert, Elliot P. ;
Chung, Ung-il ;
Ohba, Shinsuke ;
Oshika, Tetsuro ;
Sakai, Takamasa .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (03)
[24]   Kinetically Enhanced Bubble-Exfoliation of Graphite toward High-Yield Preparation of High-Quality Graphene [J].
He, Peng ;
Gu, Hongyu ;
Wang, Gang ;
Yangp, Siwei ;
Ding, Guqiao ;
Liu, Zhi ;
Xie, Xiaoming .
CHEMISTRY OF MATERIALS, 2017, 29 (20) :8578-8582
[25]   Ion Transport in Glassy Polymerized Ionic Liquids: Unraveling the Impact of the Molecular Structure [J].
Heres, Maximilian ;
Cosby, Tyler ;
Mapesa, Emmanuel Urandu ;
Liu, Hongjun ;
Berdzinski, Stefan ;
Strehmel, Veronika ;
Dadmun, Mark ;
Paddison, Stephen J. ;
Sangoro, Joshua .
MACROMOLECULES, 2019, 52 (01) :88-95
[26]   Soft Materials in Neuroengineering for Hard Problems in Neuroscience [J].
Jeong, Jae-Woong ;
Shin, Gunchul ;
Park, Sung Il ;
Yu, Ki Jun ;
Xu, Lizhi ;
Rogers, John A. .
NEURON, 2015, 86 (01) :175-186
[27]   Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics [J].
Jiang, Yuanwen ;
Zhang, Zhitao ;
Wang, Yi-Xuan ;
Li, Deling ;
Coen, Charles-Theophile ;
Hwaun, Ernie ;
Chen, Gan ;
Wu, Hung-Chin ;
Zhong, Donglai ;
Niu, Simiao ;
Wang, Weichen ;
Saberi, Aref ;
Lai, Jian-Cheng ;
Wu, Yilei ;
Wang, Yang ;
Trotsyuk, Artem A. ;
Loh, Kang Yong ;
Shih, Chien-Chung ;
Xu, Wenhui ;
Liang, Kui ;
Zhang, Kailiang ;
Bai, Yihong ;
Gurusankar, Gurupranav ;
Hu, Wenping ;
Jia, Wang ;
Cheng, Zhen ;
Dauskardt, Reinhold H. ;
Gurtner, Geoffrey C. ;
Tok, Jeffrey B-H ;
Deisseroth, Karl ;
Soltesz, Ivan ;
Bao, Zhenan .
SCIENCE, 2022, 375 (6587) :1411-+
[28]   "Nonswellable" Hydrogel Without Mechanical Hysteresis [J].
Kamata, Hiroyuki ;
Akagi, Yuki ;
Kayasuga-Kariya, Yuko ;
Chung, Ung-il ;
Sakai, Takamasa .
SCIENCE, 2014, 343 (6173) :873-875
[29]   Scalable production of large single-layered graphenes by microwave exfoliation 'in deionized water' [J].
Kim, Hye-Rim ;
Lee, Sung-Hyun ;
Lee, Kun-Hong .
CARBON, 2018, 134 :431-438
[30]   Polymeric Aggregate-Embodied Hybrid Nitric-Oxide-Scavenging and Sequential Drug-Releasing Hydrogel for Combinatorial Treatment of Rheumatoid Arthritis [J].
Kim, Taejeong ;
Suh, Jeeyeon ;
Kim, Won Jong .
ADVANCED MATERIALS, 2021, 33 (34)