Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics

被引:138
作者
Han, Im Kyung [1 ]
Song, Kang-Il [2 ]
Jung, Sang-Mun [1 ]
Jo, Yeonggwon [3 ]
Kwon, Jaesub [1 ]
Chung, Taehun [1 ]
Yoo, Surim [3 ]
Jang, Jinah [3 ,4 ,5 ,6 ]
Kim, Yong-Tae [1 ]
Hwang, Dong Soo [3 ,6 ,7 ]
Kim, Youn Soo [1 ,3 ,8 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[2] Daegu Gyeongbuk Med Innovat Fdn, Med Device Dev Ctr, Daegu 41061, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Sch Interdisciplinary Biosci & Bioengn, Pohang 37673, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[5] Pohang Univ Sci & Technol POSTECH, Dept Convergence IT Engn, Pohang 37673, South Korea
[6] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
[7] Pohang Univ Sci & Technol POSTECH, Div Environm Sci & Engn, Pohang 37673, South Korea
[8] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
adhesive hydrogels; bioelectronics; conductive hydrogels; electrode-tissue interfaces; viscoelastic hydrogels; PERIPHERAL-NERVE; HIGH-QUALITY; ABSORPTION-SPECTROSCOPY; CARBON NANOTUBES; LAYER GRAPHENE; STRAIN SENSORS; GRAPHITE; EXFOLIATION; OXIDE; NANOMATERIALS;
D O I
10.1002/adma.202203431
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a new class of materials, implantable flexible electrical conductors have recently been developed and applied to bioelectronics. An ideal electrical conductor requires high conductivity, tissue-like mechanical properties, low toxicity, reliable adhesion to biological tissues, and the ability to maintain its shape in wet physiological environments. Despite significant advances, electrical conductors that satisfy all these requirements are insufficient. Herein, a facile method for manufacturing a new conductive hydrogels through the simultaneous exfoliation of graphite and polymerization of zwitterionic monomers triggered by microwave irradiation is introduced. The mechanical properties of the obtained conductive hydrogel are similar to those of living tissue, which is ideal as a bionic adhesive for minimizing contact damage due to mechanical mismatches between hard electronics and soft tissues. Furthermore, it exhibits excellent adhesion performance, electrical conductivity, non-swelling, and high conformability in water. Excellent biocompatibility of the hydrogel is confirmed through a cytotoxicity test using C2C12 cells, a biocompatibility test on rat tissues, and their histological analysis. The hydrogel is then implanted into the sciatic nerve of a rat and neuromodulation is demonstrated through low-current electrical stimulation. This hydrogel demonstrates a tissue-like extraneuronal electrode, which possesses high conformability to improve the tissue-electronics interfaces, promising next-generation bioelectronics applications.
引用
收藏
页数:16
相关论文
共 90 条
[1]   Intrinsic Surface-Drying Properties of Bioadhesive Proteins [J].
Akdogan, Yasar ;
Wei, Wei ;
Huang, Kuo-Ying ;
Kageyama, Yoshiyuki ;
Danner, Eric W. ;
Miller, Dusty R. ;
Rodriguez, Nadine R. Martinez ;
Waite, J. Herbert ;
Han, Songi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (42) :11253-11256
[2]   Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires [J].
Araki, Teppei ;
Yoshida, Fumiaki ;
Uemura, Takafumi ;
Noda, Yuki ;
Yoshimoto, Shusuke ;
Kaiju, Taro ;
Suzuki, Takafumi ;
Hamanaka, Hiroki ;
Baba, Kousuke ;
Hayakawa, Hideki ;
Yabumoto, Taiki ;
Mochizuki, Hideki ;
Kobayashi, Shingo ;
Tanaka, Masaru ;
Hirata, Masayuki ;
Sekitani, Tsuyoshi .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (10)
[3]   Epicardial Interventions in Electrophysiology [J].
Boyle, Noel G. ;
Shivkumar, Kalyanam .
CIRCULATION, 2012, 126 (14) :1752-+
[4]  
Budday S., 2018, Pamm, V18, P3
[5]   The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes [J].
Buzsaki, Gyoergy ;
Anastassiou, Costas A. ;
Koch, Christof .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) :407-420
[6]  
Chaudhuri O, 2014, NAT MATER, V13, P970, DOI [10.1038/nmat4009, 10.1038/NMAT4009]
[7]   An Adhesive Hydrogel with "Load-Sharing" Effect as Tissue Bandages for Drug and Cell Delivery [J].
Chen, Jing ;
Wang, Dong ;
Wang, Long-Hai ;
Liu, Wanjun ;
Chiu, Alan ;
Shariati, Kaavian ;
Liu, Qingsheng ;
Wang, Xi ;
Zhong, Zhe ;
Webb, James ;
Schwartz, Robert E. ;
Bouklas, Nikolaos ;
Ma, Minglin .
ADVANCED MATERIALS, 2020, 32 (43)
[8]   Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics [J].
Choi, Suji ;
Han, Sang Ihn ;
Jung, Dongjun ;
Hwang, Hye Jin ;
Lim, Chaehong ;
Bae, Soochan ;
Park, Ok Kyu ;
Tschabrunn, Cory M. ;
Lee, Mincheol ;
Bae, Sun Youn ;
Yu, Ji Woong ;
Ryu, Ji Ho ;
Lee, Sang-Woo ;
Park, Kyungpyo ;
Kang, Peter M. ;
Lee, Won Bo ;
Nezafat, Reza ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
NATURE NANOTECHNOLOGY, 2018, 13 (11) :1048-+
[9]   Bioinspired Design of Graphene-Based Materials [J].
Christian, Meganne ;
Mazzaro, Raffaello ;
Morandi, Vittorio .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (51)
[10]   Fast and Large Shrinking of Thermoresponsive Hydrogels with Phase-Separated Structures [J].
Chung, Taehun ;
Han, Im Kyung ;
Han, Jihoon ;
Ahn, Kyojin ;
Kim, Youn Soo .
GELS, 2021, 7 (01)