Facile Synthesis of Hollow V2O5 Microspheres for Lithium-Ion Batteries with Improved Performance

被引:1
|
作者
Fei, Hailong [1 ]
Wu, Peng [1 ]
He, Liqing [2 ,3 ]
Li, Haiwen [2 ,3 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350108, Peoples R China
[2] Hefei Gen Machinery Res Inst Co Ltd, Hefei 230031, Peoples R China
[3] Anhui Prov Lab Technol Hydrogen Storage & Transpor, Hefei 230031, Peoples R China
关键词
microsphere; lithium-ion battery; vitamin C; vanadium acetylacetonate; hydrothermal; TEMPLATE-FREE SYNTHESIS; CATHODE; ELECTRODE;
D O I
10.3390/inorganics12020037
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Micro-nanostructured electrode materials are characterized by excellent performance in various secondary batteries. In this study, a facile and green hydrothermal method was developed to prepare amorphous vanadium-based microspheres on a large scale. Hollow V2O5 microspheres were achieved, with controllable size, after the calcination of amorphous vanadium-based microspheres and were used as cathode materials for lithium-ion batteries. As the quantity of V2O5 microspheres increased, the electrode performance improved, which was ascribed to the smaller charge transfer impedance. The discharge capacity of hollow V2O5 microspheres could be up to 196.4 mAhg(-1) at a current density of 50 mAg(-1) between 2.0 and 3.5 V voltage limits. This sheds light on the synthesis and application of spherical electrode materials for energy storage.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Electrochemical properties and facile preparation of hollow porous V2O5 microspheres for lithium-ion batteries
    Xue, Lichun
    Li, Yueqing
    Lin, Wentao
    Chen, Feiming
    Chen, Guichan
    Chen, Dengjie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 : 231 - 241
  • [2] Novel synthesis of V2O5 hollow microspheres for lithium ion batteries
    Zeng, Lu
    Pan, Anqiang
    Liang, Shuquan
    Wang, Jinbin
    Cao, Guozhong
    SCIENCE CHINA-MATERIALS, 2016, 59 (07) : 567 - 573
  • [3] Facile Preparation of V2O5 Hollow Microspheres with Mesoporous on the Shell and Their Electrochemical Properties for Lithium-Ion Batteries
    Dong, Xuelu
    Dong, Fangyuan
    Zhu, Keke
    Li, Haibo
    Zeng, Suyuan
    Cui, Chuansheng
    Fu, Chonggang
    Wang, Lei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (05)
  • [4] Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries
    Zhang, Xingyuan
    Wang, Jian-Gan
    Liu, Huanyan
    Liu, Hongzhen
    Wei, Bingqing
    MATERIALS, 2017, 10 (01)
  • [5] Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries
    Zhu, D.
    Liu, H.
    Lv, L.
    Yao, Y. D.
    Yang, W. Z.
    SCRIPTA MATERIALIA, 2008, 59 (06) : 642 - 645
  • [6] Controllable Preparation of V2O5 Hollow Microspheres as Cathode Materials for Lithium-Ion Batteries
    An, Xinxin
    Su, Qiong
    Liu, Yanglin
    Pan, Anqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (07): : 6885 - 6894
  • [7] Internal-diffusion controlled synthesis of V2O5 hollow microspheres for superior lithium-ion full batteries
    Shan, Yilin
    Xu, Lei
    Hu, Yanjie
    Jiang, Hao
    Li, Chunzhong
    CHEMICAL ENGINEERING SCIENCE, 2019, 200 : 38 - 45
  • [8] Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries
    Wang, Hong-En
    Chen, Dai-Song
    Cai, Yi
    Zhang, Run-Lin
    Xu, Jun-Meng
    Deng, Zhao
    Zheng, Xian-Feng
    Li, Yu
    Bello, Igor
    Su, Bao-Lian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 418 : 74 - 80
  • [9] Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries
    Wang, Suqing
    Lu, Zhenda
    Wang, Da
    Li, Chunguang
    Chen, Chunhua
    Yin, Yadong
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) : 6365 - 6369
  • [10] Facile synthesis of V2O5 nanoparticles as a capable cathode for high energy lithium-ion batteries
    Zhu, Kai
    Meng, Yuan
    Qiu, Hailong
    Gao, Yu
    Wang, Chunzhong
    Du, Fei
    Wei, Yingjin
    Chen, Gang
    Wang, Chunzhong
    Chen, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 650 : 370 - 373