Unlocking the local structure of hard carbon to grasp sodium-ion diffusion behavior for advanced sodium-ion batteries

被引:93
|
作者
Feng, Xin [1 ,2 ]
Li, Yu [1 ,2 ]
Li, Ying [1 ]
Liu, Mingquan [1 ,2 ]
Zheng, Lumin [1 ]
Gong, Yuteng [1 ]
Zhang, Ripeng [1 ]
Wu, Feng [1 ,2 ]
Wu, Chuan [1 ,2 ]
Bai, Ying [1 ,2 ]
机构
[1] Beijing Inst Technol, Beijing 100000, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314019, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
STORAGE MECHANISM; INSERTION; NITROGEN; ANODES; OXYGEN;
D O I
10.1039/d3ee03347c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Clarifying the microstructure of hard carbon is essential to reveal its sodium storage mechanism and to develop hard carbon negative electrodes for high-performance sodium ion batteries. Currently, although various sodium storage mechanisms for hard carbon models are proposed, they are still controversial. Besides, the puzzling and abnormal variation of a Na+ diffusion coefficient during the discharge process cannot be well explained. Inspired by amorphous alloys, we propose and confirm the dispersion region at the junction between amorphous structures and graphite microcrystals, which is closely related to the structure of graphite microcrystals. The special dispersion region plays a buffer role in the sodium ion diffusion process and provides satisfactory storage capacity. Therefore, the effect of synthesis conditions on the local structure in the dispersion region should be considered when designing hard carbon. In this work, a specific graphite microcrystalline structure of hard carbon is precisely synthesized by screening organic molecules, and the constraint relationship between the parameters of the graphite microcrystalline structure is revealed. Importantly, this work is of great significance for resolving the current controversy about the sodium storage mechanism and making clear the anomalies of sodium ion diffusion in the low-voltage interval (<0.1 V) in hard carbon.
引用
收藏
页码:1387 / 1396
页数:10
相关论文
共 50 条
  • [1] Research progress on hard carbon materials in advanced sodium-ion batteries
    Fan, Xiangyu
    Kong, Xirui
    Zhang, Pengtang
    Wang, Jiulin
    ENERGY STORAGE MATERIALS, 2024, 69
  • [2] Superresilient Hard Carbon Nanofabrics for Sodium-Ion Batteries
    Ding, Chenfeng
    Huang, Lingbo
    Lan, Jinle
    Yu, Yunhua
    Zhong, Wei-Hong
    Yang, Xiaoping
    SMALL, 2020, 16 (11)
  • [3] Hard carbon anode materials for sodium-ion batteries
    El Moctar, Ismaila
    Ni, Qiao
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [4] Nano Hard Carbon Anodes for Sodium-Ion Batteries
    Kim, Dae-Yeong
    Kim, Dong-Hyun
    Kim, Soo-Hyun
    Lee, Eun-Kyung
    Park, Sang-Kyun
    Lee, Ji-Woong
    Yun, Yong-Sup
    Choi, Si-Young
    Kang, Jun
    NANOMATERIALS, 2019, 9 (05)
  • [5] Structure and function of hard carbon negative electrodes for sodium-ion batteries
    Mittal, Uttam
    Djuandhi, Lisa
    Sharma, Neeraj
    Andersen, Henrik L.
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04):
  • [6] Influence of Hard Carbon Materials Structure on the Performance of Sodium-Ion Batteries
    Ren, Yifei
    Wang, Zhixing
    Wang, Jiexi
    Yan, Guochun
    Li, Xinhai
    Peng, Wenjie
    Guo, Huajun
    ENERGY & FUELS, 2023, 37 (18) : 14365 - 14374
  • [7] Bridging Microstructure and Sodium-Ion Storage Mechanism in Hard Carbon for Sodium Ion Batteries
    Zeng, Yuejing
    Yang, Jin
    Yang, Huiya
    Yang, Yang
    Zhao, Jinbao
    ACS ENERGY LETTERS, 2024, 9 (03): : 1184 - 1191
  • [8] Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries
    Zhao, Shuoqing
    Guo, Ziqi
    Yang, Jian
    Wang, Chengyin
    Sun, Bing
    Wang, Guoxiu
    SMALL, 2021, 17 (48)
  • [9] Graphitic Carbon Materials for Advanced Sodium-Ion Batteries
    Xu, Zheng-Long
    Park, Jooha
    Yoon, Cabin
    Kim, Haegyeom
    Kang, Kisuk
    SMALL METHODS, 2019, 3 (04)
  • [10] Carbon Anode Materials for Advanced Sodium-Ion Batteries
    Hou, Hongshuai
    Qiu, Xiaoqing
    Wei, Weifeng
    Zhang, Yun
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)