Diagnostic weight functions in constants-of-motion phase-space

被引:9
|
作者
Rud, M. [1 ]
Moseev, D. [2 ]
Jaulmes, F. [3 ]
Bogar, K. [3 ]
Eriksson, J. [4 ]
Jarleblad, H. [1 ]
Nocente, M. [5 ]
Prechel, G. [6 ]
Reman, B. C. G. [1 ]
Schmidt, B. S. [1 ]
Snicker, A. [7 ]
Stagner, L. [8 ]
Valentini, A. [1 ]
Salewski, M. [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[2] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany
[3] Czech Acad Sci, Inst Plasma Phys, Inst Plasma Phys, Slovankou 1782-3, Prague 18200, Czech Republic
[4] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[5] Univ Milano Bicocca, Dept Phys, I-20126 Milan, Italy
[6] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA
[7] VTT Tech Res Ctr Finland, Espoo, Finland
[8] Gen Atom, POB 85608, San Diego, CA 92186 USA
关键词
weight functions; fast ions; diagnostics; constants-of-motion phase-space; TOPOLOGY; TOKAMAK;
D O I
10.1088/1741-4326/ad1fac
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The fast-ion phase-space distribution function in axisymmetric tokamak plasmas is completely described by the three constants of motion: energy, magnetic moment and toroidal canonical angular momentum. In this work, the observable regions of constants-of-motion phase-space, given a diagnostic setup, are identified and explained using projected velocities of the fast ions along the diagnostic lines-of-sight as a proxy for several fast-ion diagnostics, such as fast-ion D alpha spectroscopy, collective Thomson scattering, neutron emission spectroscopy and gamma-ray spectroscopy. The observable region in constants-of-motion space is given by a position condition and a velocity condition, and the diagnostic sensitivity is given by a gyro-orbit and a drift-orbit weighting. As a practical example, 3D orbit weight functions quantifying the diagnostic sensitivity to each point in phase-space are computed and investigated for the future COMPASS-Upgrade and MAST-Upgrade tokamaks.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Orbit tomography in constants-of-motion phase-space
    Rud, M.
    Moseev, D.
    Jaulmes, F.
    Bogar, K.
    Dong, Y.
    Hansen, P. C.
    Eriksson, J.
    Jaerleblad, H.
    Nocente, M.
    Prechel, G.
    Reman, B. C. G.
    Schmidt, B. S.
    Snicker, A.
    Stagner, L.
    Valentini, A.
    Salewski, M.
    NUCLEAR FUSION, 2024, 64 (07)
  • [2] EQUATIONS OF MOTION IN PHASE-SPACE
    BROUCKE, R
    HADRONIC JOURNAL, 1979, 2 (05): : 1122 - 1158
  • [3] Phase-space sensitivity (weight functions) of 3 MeV proton diagnostics
    Heidbrink, W. W.
    Garcia, A.
    Boeglin, W.
    Salewski, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (05)
  • [4] BROWNIAN-MOTION IN PHASE-SPACE
    EDER, OJ
    LACKNER, T
    PHYSICAL REVIEW A, 1984, 29 (02): : 799 - 810
  • [5] Parametrized discrete phase-space functions
    Opatrny, T
    Welsch, DG
    Buzek, V
    PHYSICAL REVIEW A, 1996, 53 (06): : 3822 - 3835
  • [6] On marginalization of phase-space distribution functions
    Wlodarz, JJ
    PHYSICS LETTERS A, 1999, 264 (01) : 18 - 21
  • [7] PHASE-SPACE FUNCTIONS AND CORRESPONDENCE RULES
    SPRINGBORG, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03): : 535 - 542
  • [8] On phase-space integrals with Heaviside functions
    Baranowski, Daniel
    Delto, Maximilian
    Melnikov, Kirill
    Wang, Chen-Yu
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [9] QUANTUM PHASE-SPACE DISTRIBUTION FUNCTIONS
    RUGGERI, G
    ACTA CIENTIFICA VENEZOLANA, 1971, 22 : 34 - &
  • [10] Density Matrices and Phase-Space Functions
    Dahl, Jens Peder
    ADVANCES IN QUANTUM CHEMISTRY, VOL 39: NEW PERSPECTIVES IN QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, PT 1, 2001, 39 : 1 - 18