Remaining useful life distribution prediction framework for lithium-ion battery fused prior knowledge and monitoring data

被引:6
|
作者
Wang, Mingxian [1 ]
Xiang, Gang [2 ]
Cui, Langfu [1 ]
Zhang, Qingzhen [1 ]
Chen, Juan [3 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beijing Aerosp Automat Control Inst, Beijing 100854, Peoples R China
[3] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
关键词
hybrid method; remaining useful life prediction; stacking strategy; Wiener process; convolutional gated recurrent neural network; lithium-ion battery; MODEL;
D O I
10.1088/1361-6501/ace925
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining useful life (RUL) prediction is the main approach to guarantee the reliability of lithium-ion batteries. This paper proposes an interpretable hybrid method to predict the RUL distribution with changeable form. The method integrates prior knowledge from the statistical model and regular patterns learned from monitoring data based on the data-driven model. The predicted compound distribution provides more information compared to point estimation and distribution with fixed form. The general hybrid framework contains a component learner, a fusion model with a stacking strategy, and a prognostic distribution algorithm with adaptive sampling weights. The stacking fusion model is implemented by a one-dimensional convolution neural network. The sampling weights are estimated by optimal estimation. The statistical model describes the individual capacity degradation path based on the Wiener process. The data-driven model learns the degradation process from historical data based on convolutional gated recurrent neural network (CNN-GRU) and Monte Carlo dropout simulation. The comparative experiments between the proposed method and existing methods were carried out. The experiment results show that the proposed hybrid method performs well.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Prediction of remaining useful life for lithium-ion battery based on particle filter with residual resampling
    Pan, Chaofeng
    Huang, Aibao
    He, Zhigang
    Lin, Chunjing
    Sun, Yanyan
    Zhao, Shichao
    Wang, Limei
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (08): : 1115 - 1133
  • [42] Prediction of Lithium-Ion Battery's Remaining Useful Life Based on Relevance Vector Machine
    Zhang, Zhiyun
    Huang, Miaohua
    Chen, Yupu
    Zhu, Shuanglong
    SAE INTERNATIONAL JOURNAL OF ALTERNATIVE POWERTRAINS, 2016, 5 (01) : 30 - 40
  • [43] Lithium-ion Battery Remaining Useful Life Prediction Based on Exponential Smoothing and Particle Filter
    Pan, Chaofeng
    Chen, Yao
    Wang, Limei
    He, Zhigang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9537 - 9551
  • [44] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [45] A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction
    Peng, Jun
    Zheng, Zhiyong
    Zhang, Xiaoyong
    Deng, Kunyuan
    Gao, Kai
    Li, Heng
    Chen, Bin
    Yang, Yingze
    Huang, Zhiwu
    ENERGIES, 2020, 13 (03)
  • [46] A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
    Ren, Lei
    Dong, Jiabao
    Wang, Xiaokang
    Meng, Zihao
    Zhao, Li
    Deen, M. Jamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3478 - 3487
  • [47] State of Health Diagnosis and Remaining Useful Life Prediction for Lithium-ion Battery Based on Data Model Fusion Method
    Cui, Xiangbo
    Hu, Tete
    IEEE ACCESS, 2020, 8 : 207298 - 207307
  • [48] A data-driven approach with error compensation and uncertainty quantification for remaining useful life prediction of lithium-ion battery
    Wei, Meng
    Ye, Min
    Wang, Qiao
    Lian, Gaoqi
    Xu, Xinxin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20121 - 20135
  • [49] Data-driven Prognostics and Remaining Useful Life Estimation for Lithium-ion Battery: A Review
    LIU Datong
    ZHOU Jianbao
    PENG Yu
    Instrumentation, 2014, 01 (01) : 59 - 70
  • [50] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6