Solvability of the heat equation on a half-space with a dynamical boundary condition and unbounded initial data

被引:1
作者
Fila, Marek [1 ]
Ishige, Kazuhiro [2 ]
Kawakami, Tatsuki [3 ]
机构
[1] Comenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
[2] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
[3] Ryukoku Univ, Fac Adv Sci & Technol, 1-5 Yokotani,Seta Oe Cho, Otsu, Shiga 5202194, Japan
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 04期
关键词
Heat equation; Dynamical boundary condition; Weighted Lebesgue space; Existence of solutions; REACTION-DIFFUSION EQUATIONS; PARABOLIC PROBLEMS; BLOW-UP; LIMIT;
D O I
10.1007/s00033-023-02040-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the linear heat equation on a half-space with a linear dynamical boundary condition. We are interested in an appropriate choice of the function space of initial functions such that the problem possesses a solution. It was known before that bounded initial data guarantee solvability. Here, we extend that result by showing that data from a weighted Lebesgue space will also do so.
引用
收藏
页数:17
相关论文
共 27 条
[1]  
AMANN H., 1997, Acta Mathematica Universitatis Comenianae, V66, P321
[2]  
[Anonymous], 2001, Differen. Integral Equ.
[3]  
[Anonymous], 1995, DIFFER INTEGRAL EQU
[4]  
[Anonymous], 2007, Discrete Contin. Dyn. Syst.
[5]  
Bandle C, 2006, REND LINCEI-MAT APPL, V17, P35
[6]  
Crank Jone., 1975, The Mathematics of Diffusion, VSecond
[7]   Maximal Lp-regularity of parabolic problems with boundary dynamics of relaxation type [J].
Denk, Robert ;
Pruess, Jan ;
Zacher, Rico .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (11) :3149-3187
[8]   QUASI-LINEAR PARABOLIC-SYSTEMS WITH DYNAMICAL BOUNDARY-CONDITIONS [J].
ESCHER, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (7-8) :1309-1364
[9]  
Fila M, 1999, PROG NONLIN, V35, P251
[10]  
Fila M, 2013, ADV DIFFERENTIAL EQU, V18, P69