Self-Propelled Enzymatic Nanomotors from Prodrug-Skeletal Zeolitic Imidazolate Frameworks for Boosting Multimodel Cancer Therapy Efficiency

被引:25
作者
Yu, Jieyu [1 ]
Li, Yan [1 ]
Yan, An [1 ]
Gao, Yuwei [1 ]
Xiao, Fei [1 ]
Xu, Zhengwei [1 ]
Xu, Jiayun [1 ]
Yu, Shuangjiang [1 ]
Liu, Junqiu [1 ]
Sun, Hongcheng [1 ]
机构
[1] Hangzhou Normal Univ, Key Lab Organosilicon Chem & Mat Technol, Key Lab Organosilicon Mat Technol Zhejiang Prov, Coll Mat Chem & Chem Engn,Minist Educ, Hangzhou 311121, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
cascade enzyme reactions; cisplatin skeleton; enzymatic nanomotors; O-2; self-supply; synergetic cancer therapy; MICRO/NANOMOTORS; PLATFORM; HYPOXIA; DRIVEN;
D O I
10.1002/advs.202301919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-propelled nanomotors, which can autonomous propelled by harnessing others type of energy, have shown tremendous potential as drug delivery systems for cancer therapy. However, it remains challenging for nanomotors in tumor theranostics because of their structural complexity and deficient therapeutic model. Herein, glucose-fueled enzymatic nanomotors (GC6@cPt ZIFs) are developed through encapsulation of glucose oxidase (GOx), catalase (CAT), and chlorin e6 (Ce6) using cisplatin-skeletal zeolitic imidazolate frameworks (cPt ZIFs) for synergetic photochemotherapy. The GC6@cPt ZIFs nanomotors can produce O-2 through enzymatic cascade reactions for propelling the self-propulsion. Trans-well chamber and multicellular tumor spheroids experiments demonstrate the deep penetration and high accumulation of GC6@cPt nanomotors. Importantly, the glucose-fueled nanomotor can release the chemotherapeutic cPt and generate reactive oxygen species under laser irradiation, and simultaneously consume intratumoral over-expressed glutathione. Mechanistically, such processes can inhibit cancer cell energy and destroy intratumoral redox balance to synergistically damage DNA and induce tumor cell apoptosis. Collectively, this work demonstrates that the self-propelled prodrug-skeleton nanomotors with oxidative stress activation can highlight a robust therapeutic capability of oxidants amplification and glutathione depletion to boost the synergetic cancer therapy efficiency.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Intrinsic enzymatic properties modulate the self-propulsion of micromotors [J].
Arque, Xavier ;
Romero-Rivera, Adrian ;
Feixas, Ferran ;
Patino, Tania ;
Osuna, Silvia ;
Sanchez, Samuel .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Exploiting tumour hypoxia in cancer treatment [J].
Brown, JM ;
William, WR .
NATURE REVIEWS CANCER, 2004, 4 (06) :437-447
[3]   Toxic Reactive Oxygen Species Enhanced Synergistic Combination Therapy by Self-Assembled Metal-Phenolic Network Nanoparticles [J].
Dai, Yunlu ;
Yang, Zhen ;
Cheng, Siyuan ;
Wang, Zhongliang ;
Zhang, Ruili ;
Zhu, Guizhi ;
Wang, Zhantong ;
Yung, Bryant C. ;
Tian, Rui ;
Jacobson, Orit ;
Xu, Can ;
Ni, Qianqian ;
Song, Jibin ;
Sun, Xiaolian ;
Niu, Gang ;
Chen, Xiaoyuan .
ADVANCED MATERIALS, 2018, 30 (08)
[4]   Tailoring Supramolecular Prodrug Nanoassemblies for Reactive Nitrogen Species-Potentiated Chemotherapy of Liver Cancer [J].
Deng, Yongyan ;
Wang, Yupeng ;
Jia, Fan ;
Liu, Weifeng ;
Zhou, Dongfang ;
Jin, Qiao ;
Ji, Jian .
ACS NANO, 2021, 15 (05) :8663-8675
[5]   Photocatalytic Micro/Nanomotors: From Construction to Applications [J].
Dong, Renfeng ;
Cai, Yuepeng ;
Yang, Yiran ;
Gao, Wei ;
Ren, Biye .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (09) :1940-1947
[6]  
Felfoul O, 2016, NAT NANOTECHNOL, V11, P941, DOI [10.1038/NNANO.2016.137, 10.1038/nnano.2016.137]
[7]   Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment [J].
Gong, Ningqiang ;
Ma, Xiaowei ;
Ye, Xiaoxia ;
Zhou, Qunfang ;
Chen, Xiaoai ;
Tan, Xiaoli ;
Yao, Shengkun ;
Huo, Shuaidong ;
Zhang, Tingbin ;
Chen, Shizhu ;
Teng, Xucong ;
Hu, Xixue ;
Yu, Jie ;
Gan, Yaling ;
Jiang, Huaidong ;
Li, Jinghong ;
Liang, Xing-Jie .
NATURE NANOTECHNOLOGY, 2019, 14 (04) :379-+
[8]   Designing Micro- and Nanoswimmers for Specific Applications [J].
Katuri, Jaideep ;
Ma, Xing ;
Stanton, Morgan M. ;
Sanchez, Samuel .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (01) :2-11
[9]   Continuous O2-Evolving MnFe2O4 Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer [J].
Kim, Jonghoon ;
Cho, Hye Rim ;
Jeon, Hyejin ;
Kim, Dokyoon ;
Song, Changyeong ;
Lee, Nohyun ;
Choi, Seung Hong ;
Hyeon, Taeghwan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (32) :10992-10995
[10]   Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water [J].
Kutorglo, Edith Mawunya ;
Elashnikov, Roman ;
Rimpelova, Silvie ;
Ulbrich, Pavel ;
Ambrozova, Jana Rihova ;
Svorcik, Vaclav ;
Lyutakov, Oleksiy .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (14) :16173-16181