Deep Learning Empowers Endoscopic Detection and Polyps Classification: A Multiple-Hospital Study

被引:2
作者
Shen, Ming-Hung [1 ,2 ]
Huang, Chi-Cheng [3 ,4 ]
Chen, Yu-Tsung [5 ]
Tsai, Yi-Jian [6 ,7 ]
Liou, Fou-Ming [8 ]
Chang, Shih-Chang [9 ]
Phan, Nam Nhut [10 ]
机构
[1] Fu Jen Catholic Univ, Fu Jen Catholic Univ Hosp, Dept Surg, New Taipei City 24205, Taiwan
[2] Fu Jen Catholic Univ, Coll Med, Sch Med, New Taipei City 24205, Taiwan
[3] Taipei Vet Gen Hosp, Dept Surg, Taipei City 11217, Taiwan
[4] Natl Taiwan Univ, Inst Epidemiol & Prevent Med, Coll Publ Hlth, Taipei City 10663, Taiwan
[5] Fu Jen Catholic Univ Hosp, Dept Internal Med, New Taipei City 24205, Taiwan
[6] Fu Jen Catholic Univ Hosp, Dept Surg, Div Colorectal Surg, New Taipei City 24205, Taiwan
[7] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Dept Elect Engn, Taipei City 10663, Taiwan
[8] ASUSTeK Comp Inc, Taipei City 11259, Taiwan
[9] Cathay Gen Hosp, Dept Surg, Div Colorectal Surg, Taipei City 106443, Taiwan
[10] Natl Taiwan Univ, Ctr Genom & Precis Med, Bioinformat & Biostat Core, Taipei City 10055, Taiwan
关键词
colorectal cancer; endoscopic; deep learning; COLORECTAL POLYPS; DIAGNOSIS;
D O I
10.3390/diagnostics13081473
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The present study aimed to develop an AI-based system for the detection and classification of polyps using colonoscopy images. A total of about 256,220 colonoscopy images from 5000 colorectal cancer patients were collected and processed. We used the CNN model for polyp detection and the EfficientNet-b0 model for polyp classification. Data were partitioned into training, validation and testing sets, with a 70%, 15% and 15% ratio, respectively. After the model was trained/validated/tested, to evaluate its performance rigorously, we conducted a further external validation using both prospective (n = 150) and retrospective (n = 385) approaches for data collection from 3 hospitals. The deep learning model performance with the testing set reached a state-of-the-art sensitivity and specificity of 0.9709 (95% CI: 0.9646-0.9757) and 0.9701 (95% CI: 0.9663-0.9749), respectively, for polyp detection. The polyp classification model attained an AUC of 0.9989 (95% CI: 0.9954-1.00). The external validation from 3 hospital results achieved 0.9516 (95% CI: 0.9295-0.9670) with the lesion-based sensitivity and a frame-based specificity of 0.9720 (95% CI: 0.9713-0.9726) for polyp detection. The model achieved an AUC of 0.9521 (95% CI: 0.9308-0.9734) for polyp classification. The high-performance, deep-learning-based system could be used in clinical practice to facilitate rapid, efficient and reliable decisions by physicians and endoscopists.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Effectiveness of a Deep-learning Polyp Detection System in Prospectively Collected Colonoscopy Videos With Variable Bowel Preparation Quality [J].
Becq, Aymeric ;
Chandnani, Madhuri ;
Bharadwaj, Shishira ;
Baran, Bulent ;
Ernest-Suarez, Kenneth ;
Gabr, Moamen ;
Glissen-Brown, Jeremy ;
Sawhney, Mandeep ;
Pleskow, Douglas K. ;
Berzin, Tyler M. .
JOURNAL OF CLINICAL GASTROENTEROLOGY, 2020, 54 (06) :554-557
[2]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[3]  
Chaib S., 2017, P 9 INT C DIG IM PRO, P712
[4]   Pre-Trained Image Processing Transformer [J].
Chen, Hanting ;
Wang, Yunhe ;
Guo, Tianyu ;
Xu, Chang ;
Deng, Yiping ;
Liu, Zhenhua ;
Ma, Siwei ;
Xu, Chunjing ;
Xu, Chao ;
Gao, Wen .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12294-12305
[5]   Receipt of Colonoscopy Following Diagnosis of Advanced Adenomas: An Analysis within Integrated Healthcare Delivery Systems [J].
Chubak, Jessica ;
McLerran, Dale ;
Zheng, Yingye ;
Singal, Amit G. ;
Corley, Douglas A. ;
Doria-Rose, V. Paul ;
Doubeni, Chyke A. ;
Kamineni, Aruna ;
Haas, Jennifer S. ;
Halm, Ethan A. ;
Skinner, Celette Sugg ;
Zauber, Ann G. ;
Wernli, Karen J. ;
Beaber, Elisabeth F. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2019, 28 (01) :91-98
[6]  
Colucci Philomena M, 2003, Clin Med Res, V1, P261
[7]  
Corley DA, 2014, NEW ENGL J MED, V370, P2541, DOI [10.1056/NEJMc1405329, 10.1056/NEJMoa1309086]
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]  
Dodge S, 2016, 2016 EIGHTH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX)
[10]   Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: a large community-based study [J].
Doubeni, Chyke A. ;
Corley, Douglas A. ;
Quinn, Virginia P. ;
Jensen, Christopher D. ;
Zauber, Ann G. ;
Goodman, Michael ;
Johnson, Jill R. ;
Mehta, Shivan J. ;
Becerra, Tracy A. ;
Zhao, Wei K. ;
Schottinger, Joanne ;
Doria-Rose, V. Paul ;
Levin, Theodore R. ;
Weiss, Noel S. ;
Fletcher, Robert H. .
GUT, 2018, 67 (02) :291-U253