Tailoring solid-electrolyte interphase and solvation structure for subzero temperature, fast-charging, and long-cycle-life sodium-ion batteries

被引:30
作者
Tao, Lei [1 ]
Sittisomwong, Poom [2 ]
Ma, Bingyuan [2 ]
Hu, Anyang [1 ]
Xia, Dawei [1 ]
Hwang, Sooyeon [3 ]
Huang, Haibo [4 ]
Bai, Peng [2 ]
Lin, Feng [1 ]
机构
[1] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[2] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] Virginia Tech, Dept Food Sci & Technol, Blacksburg, VA 24061 USA
基金
美国食品与农业研究所;
关键词
Carbon materials; Pseudo-SEI; Co; -intercalation; Fast charging; Low temperature; HARD CARBON; ANODE;
D O I
10.1016/j.ensm.2022.12.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sluggish Na+ reaction kinetics with carbon materials limits the fast-charging capability, Coulombic effi-ciency, and cycle life of sodium-ion batteries, especially at low temperatures. Herein, free-standing carbon nanofiber films, with controllable crystallinity and surface chemistry, are used as a platform to investigate the correlation between Na+ reaction kinetics, storage mechanism, and electrolyte environment. The ion solvation effect and solid-electrolyte interphase (SEI) properties determine the kinetics and storage mechanism. A strong Na+-solvent interaction, such as Na+-diglyme, tends to form a "pseudo-SEI" layer dominated by anion decom-position, enabling fast Na+-solvent co-intercalation kinetics. Tuning the SEI chemistries by pre-cycling in the weakly solvated electrolyte (e.g., ester electrolyte), the intercalation capacity rapidly disappears due to the high energy barrier for Na+ transport. Such mechanistic insights allow us to develop the optimal combination of electrode materials and electrolyte chemistry to achieve high initial Coulombic efficiency, ultra-long cycle life under fast charging, and excellent low-temperature performance.
引用
收藏
页码:826 / 835
页数:10
相关论文
共 55 条
[1]   Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon [J].
Alvin, Stevanus ;
Cahyadi, Handi Setiadi ;
Hwang, Jieun ;
Chang, Wonyoung ;
Kwak, Sang Kyu ;
Kim, Jaehoon .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[2]   Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J].
Bai, Panxing ;
Han, Xinpeng ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Yufei ;
Sun, Jie ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2020, 25 :324-333
[3]   Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage [J].
Cai, Congcong ;
Chen, Yongan ;
Hu, Ping ;
Zhu, Ting ;
Li, Xinyuan ;
Yu, Qiang ;
Zhou, Liang ;
Yang, Xiaoyu ;
Mai, Liqiang .
SMALL, 2022, 18 (06)
[4]   Pre-doping iodine to restrain formation of low-active graphitic-N in hard carbon for significantly boosting sodium storage performance [J].
Chen, Jie ;
Hu, Tao ;
Zou, Zhuo ;
Zeng, Qingxin ;
Jiang, Yali ;
Tang, Chuyue ;
Tang, Chun ;
Li, Wei ;
Fang, Changxiang ;
Sun, Wei ;
Zeng, Lingzhi ;
Li, Chang Ming .
CARBON, 2022, 186 :193-204
[5]   Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries [J].
Cheng, Haoran ;
Sun, Qujiang ;
Li, Leilei ;
Zou, Yeguo ;
Wang, Yuqi ;
Cai, Tao ;
Zhao, Fei ;
Liu, Gang ;
Ma, Zheng ;
Wahyudi, Wandi ;
Li, Qian ;
Ming, Jun .
ACS ENERGY LETTERS, 2022, 7 (01) :490-513
[6]   Solvation behavior of carbonate-based electrolytes in sodium ion batteries [J].
Cresce, Arthur V. ;
Russell, Selena M. ;
Borodin, Oleg ;
Allen, Joshua A. ;
Schroeder, Marshall A. ;
Dai, Michael ;
Peng, Jing ;
Gobet, Mallory P. ;
Greenbaum, Steven G. ;
Rogers, Reginald E. ;
Xu, Kang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (01) :574-586
[7]   Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes [J].
Dong, Ruiqi ;
Zheng, Lumin ;
Bai, Ying ;
Ni, Qiao ;
Li, Yu ;
Wu, Feng ;
Ren, Haixia ;
Wu, Chuan .
ADVANCED MATERIALS, 2021, 33 (36)
[8]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[9]   Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries [J].
Feng, Yiming ;
Tao, Lei ;
He, Yanhonog ;
Jin, Qing ;
Kuai, Chunguang ;
Zheng, Yunwu ;
Li, Mengqiao ;
Hou, Qingping ;
Zheng, Zhifeng ;
Lin, Feng ;
Huang, Haibo .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) :26954-26965
[10]   Epitaxial Nickel Ferrocyanide Stabilizes Jahn-Teller Distortions of Manganese Ferrocyanide for Sodium-Ion Batteries [J].
Gebert, Florian ;
Cortie, David L. ;
Bouwer, James C. ;
Wang, Wanlin ;
Yan, Zichao ;
Dou, Shi-Xue ;
Chou, Shu-Lei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (34) :18519-18526