Envelope-based sparse reduced-rank regression for multivariate linear model

被引:0
作者
Guo, Wenxing [1 ]
Balakrishnan, Narayanaswamy [2 ]
He, Mu [3 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester, Essex, England
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[3] Xian Jiaotong Liverpool Univ, Dept Fdn Math, Suzhou, Peoples R China
关键词
Dimension reduction; Envelope model; High dimension; Reduced-rank regression; Variable selection; SIMULTANEOUS DIMENSION REDUCTION; SELECTION; ESTIMATOR;
D O I
10.1016/j.jmva.2023.105159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Envelope models were first proposed by Cook et al. (2010) as a method to reduce estimative and predictive variations in multivariate regression. Sparse reduced-rank regression, introduced by Chen and Huang (2012), is a widely used technique that performs dimension reduction and variable selection simultaneously in multivariate regression. In this work, we combine envelope models and sparse reduced-rank regression method to propose an envelope-based sparse reduced-rank regression estimator, and then establish its consistency, asymptotic normality and oracle property in highdimensional data. We carry out some Monte Carlo simulation studies and also analyze two datasets to demonstrate that the proposed envelope-based sparse reduced-rank regression method displays good variable selection and prediction performance.
引用
收藏
页数:11
相关论文
共 29 条
[1]  
Anderson TW, 1999, ANN STAT, V27, P1141
[2]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[3]   Reduced rank regression via adaptive nuclear norm penalization [J].
Chen, Kun ;
Dong, Hongbo ;
Chan, Kung-Sik .
BIOMETRIKA, 2013, 100 (04) :901-920
[4]   Reduced rank stochastic regression with a sparse singular value decomposition [J].
Chen, Kun ;
Chan, Kung-Sik ;
Stenseth, Nils Chr. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 :203-221
[5]   Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection [J].
Chen, Lisha ;
Huang, Jianhua Z. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1533-1545
[6]   Genomic and transcriptional aberrations linked to breast cancer pathophysiologies [J].
Chin, Koei ;
DeVries, Sandy ;
Fridlyand, Jane ;
Spellman, Paul T. ;
Roydasgupta, Ritu ;
Kuo, Wen-Lin ;
Lapuk, Anna ;
Neve, Richard M. ;
Qian, Zuwei ;
Ryder, Tom ;
Chen, Fanqing ;
Feiler, Heidi ;
Tokuyasu, Taku ;
Kingsley, Chris ;
Dairkee, Shanaz ;
Meng, Zhenhang ;
Chew, Karen ;
Pinkel, Daniel ;
Jain, Ajay ;
Ljung, Britt Marie ;
Esserman, Laura ;
Albertson, Donna G. ;
Waldman, Frederic M. ;
Gray, Joe W. .
CANCER CELL, 2006, 10 (06) :529-541
[7]   Sparse partial least squares regression for simultaneous dimension reduction and variable selection [J].
Chun, Hyonho ;
Keles, Suenduez .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :3-25
[8]  
Cook R., 2018, WILEY SERIES PROBABI
[9]   A note on fast envelope estimation [J].
Cook, R. Dennis ;
Forzani, Liliana ;
Su, Zhihua .
JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 :42-54
[10]   Envelopes and reduced-rank regression [J].
Cook, R. Dennis ;
Forzani, Liliana ;
Zhang, Xin .
BIOMETRIKA, 2015, 102 (02) :439-456