Statistical evaluation of biocompatibility and biodegradability of chitosan/gelatin hydrogels for wound-dressing applications

被引:19
作者
Oznur, Kazanci Goegues Dilruba [1 ]
Pinar, Tuzum Demir Ayse [1 ]
机构
[1] Usak Univ, Chem Engn Dept, TR-64200 Usak, Turkiye
关键词
Hydrogel; Chitosan; Biocompatibility; Biodegradability; Statistical analysis; Wound dressing; DRUG-DELIVERY; GLUTARALDEHYDE; SCAFFOLDS; GELATIN; BIOMATERIALS; OPTIMIZATION; CELLULOSE; ALGINATE; ADHESION; LINKING;
D O I
10.1007/s00289-023-04776-8
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This work aims to statistically assess the biocompatibility and the biodegradability of hydrogels which synthesized to different conditions for the wound-dressing applications. The present work also focuses on providing information about the synthesis of chitosan and gelatine by using a cross-linker. Experiments were designed by using Box-Behnken experimental design method. Effects of chitosan amount, gelatin amount and glutaraldehyde amount on biocompatibility and biodegradability of hydrogels have been statistically investigated. This parameters optimized by the response surface methodology in order to maximize responses as swelling, porosity, in vitro degradation and in vitro enzymatic degradation. Structural analysis of hydrogels was performed by FTIR spectroscopy. Analysis of variance was performed to assess statistically significant differences between the parameters on the biocompatibility and the biodegradability of hydrogels by using the Design Expert 13 statistical program. Mathematical model was found for each response variable, and the optimum values of the parameters were determined. The maximum percentage swelling, porosity, in vitro degradation and in vitro enzymatic degradation were obtained 470%, 92%, 83% and 86%, respectively, under conditions that 0.2 g chitosan, 0.8 g gelatin and 0.5 mL cross-linker. The limitations due to the use of glutaraldehyde are related to its high cytotoxicity. 1-(3-Dimethylaminopropyl)-3-ethyl-carbodimide (EDC) does not form toxic aldehydes. Therefore, EDC was used in hydrogel synthesis in our study for comparison against glutaraldehyde. In this optimum conditions, the effect of the molecular weight of chitosan, cross-linker type (glutaraldehyde and EDC) and ambient pH on biocompatibility (swelling, porosity analysis) and biodegradability was determined. In this study, to improve wound healing, it is thought that the results of the statistical evaluation of the effect of the simultaneous changes of the parameters on the properties of the biomaterial in obtaining the optimum condition hydrogels will contribute to biomedical applications.
引用
收藏
页码:1563 / 1596
页数:34
相关论文
共 60 条
[1]   Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing [J].
Ahmed, Rashid ;
Tariq, Muhammad ;
Ali, Imran ;
Asghar, Rehana ;
Khanam, P. Noorunnisa ;
Augustine, Robin ;
Hasan, Anwarul .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 120 :385-393
[2]   Methods of synthesis of hydrogels ... A review [J].
Akhtar, Muhammad Faheem ;
Hanif, Muhammad ;
Ranjha, Nazar Muhammad .
SAUDI PHARMACEUTICAL JOURNAL, 2016, 24 (05) :554-559
[3]   Advancement of wound care from grafts to bioengineered smart skin substitutes [J].
Augustine R. ;
Kalarikkal N. ;
Thomas S. .
Progress in Biomaterials, 2014, 3 (2-4) :103-113
[4]   Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants [J].
Bacakova, Lucie ;
Filova, Elena ;
Parizek, Martin ;
Ruml, Tomas ;
Svorcik, Vaclav .
BIOTECHNOLOGY ADVANCES, 2011, 29 (06) :739-767
[5]   Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin [J].
Balakrishnan, B ;
Mohanty, M ;
Umashankar, PR ;
Jayakrishnan, A .
BIOMATERIALS, 2005, 26 (32) :6335-6342
[6]   Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing [J].
Baldino, Lucia ;
Concilio, Simona ;
Cardea, Stefano ;
De Marco, Iolanda ;
Reverchon, Ernesto .
JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 103 :70-76
[7]   Chemical preparation of carbonated calcium hydroxyapatite powders at 37°C in urea-containing synthetic body fluids [J].
Bayraktar, D ;
Tas, AC .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (13-14) :2573-2579
[8]   Advancing biomaterials of human origin for tissue engineering [J].
Chen, Fa-Ming ;
Liu, Xiaohua .
PROGRESS IN POLYMER SCIENCE, 2016, 53 :86-168
[9]   Genipin-crosslinked chitosan/gelatin blends for biomedical applications [J].
Chiono, Valeria ;
Pulieri, Ettore ;
Vozzi, Giovanni ;
Ciardelli, Gianluca ;
Ahluwalia, Arti ;
Giusti, Paolo .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2008, 19 (02) :889-898
[10]   The future prospects of microbial cellulose in biomedical applications [J].
Czaja, Wojciech K. ;
Young, David J. ;
Kawecki, Marek ;
Brown, R. Malcolm, Jr. .
BIOMACROMOLECULES, 2007, 8 (01) :1-12