Islands of Shape Coexistence: Theoretical Predictions and Experimental Evidence

被引:6
|
作者
Martinou, Andriana [1 ]
Bonatsos, Dennis [1 ]
Peroulis, Spyridon Kosmas [1 ]
Karakatsanis, Konstantinos Eleftherios [2 ,3 ]
Mertzimekis, Theodoros John [4 ]
Minkov, Nikolay [5 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Nucl & Particle Phys, GR-15310 Attiki, Greece
[2] Univ Zagreb, Fac Sci, Dept Phys, HR-10000 Zagreb, Croatia
[3] Aristotle Univ Thessaloniki, Phys Dept, GR-54124 Thessaloniki, Greece
[4] Natl & Kapodistrian Univ Athens, Dept Phys, Zografou Campus, GR-15784 Athens, Greece
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tzarigrad Rd, Sofia 1784, Bulgaria
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
shape coexistence; proxy-SU(3) symmetry; covariant density functional theory; NUCLEAR SHELL-MODEL; HARTREE-BOGOLIUBOV THEORY; COLLECTIVE MOTION; STATES;
D O I
10.3390/sym15010029
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter-free theoretical predictions based on a dual shell mechanism within the proxy-SU(3) symmetry of atomic nuclei, as well as covariant density functional theory calculations using the DDME2 functional indicate that shape coexistence (SC) based on the particle-hole excitation mechanism cannot occur everywhere on the nuclear chart but is restricted on islands lying within regions of 7-8, 17-20, 34-40, 59-70, 96-112, 146-168 protons or neutrons. Systematics of data for even-even nuclei possessing K=0 (beta) and K=2 (gamma) bands support the existence of these islands, on which shape coexistence appears whenever the K=0 bandhead 0(2)(+) and the first excited state of the ground state band 2(1)(+) lie close in energy, with nuclei characterized by 0(2)(+) lying below the 2(1)(+ )found in the center of these islands. In addition, a simple theoretical mechanism leading to multiple-shape coexistence is briefly discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Islands of shape coexistence from single-particle spectra in covariant density functional theory
    Bonatsos, Dennis
    Karakatsanis, K. E.
    Martinou, Andriana
    Mertzimekis, T. J.
    Minkov, N.
    PHYSICAL REVIEW C, 2022, 106 (04)
  • [2] An experimental view on shape coexistence in nuclei
    Garrett, Paul E.
    Zielinska, Magda
    Clement, Emmanuel
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2022, 124
  • [3] Shape Coexistence in Even-Even Nuclei: A Theoretical Overview
    Bonatsos, Dennis
    Martinou, Andriana
    Peroulis, Spyridon K.
    Mertzimekis, Theodoros J.
    Minkov, Nikolay
    ATOMS, 2023, 11 (09)
  • [4] Evidence for shape coexistence and superdeformation in 24Mg
    Dowie, J. T. H.
    Kibedi, T.
    Jenkins, D. G.
    Stuchbery, A. E.
    Akber, A.
    Alshammari, H. A.
    Aoi, N.
    Avaa, A.
    Bignell, L. J.
    Chisapi, M., V
    Coombes, B. J.
    Eriksen, T. K.
    Gerathy, M. S. M.
    Gray, T. J.
    Hoang, T. H.
    Ideguchi, E.
    Jones, P.
    Raju, M. Kumar
    Lane, G. J.
    McCormick, B. P.
    McKie, L. J.
    Mitchell, A. J.
    Spinks, N. J.
    Tee, B. P. E.
    PHYSICS LETTERS B, 2020, 811
  • [5] The islands of shape coexistence within the Elliott and the proxy-SU(3) Models
    Martinou, Andriana
    Bonatsos, Dennis
    Mertzimekis, T. J.
    Karakatsanis, K. E.
    Assimakis, I. E.
    Peroulis, S. K.
    Sarantopoulou, S.
    Minkov, N.
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (03):
  • [6] Shape coexistence and α-decay chains of 293Lv
    Li, Zhao-Xi
    Zhang, Zhen-Hua
    Zhao, Peng-Wei
    FRONTIERS OF PHYSICS, 2015, 10 (03) : 268 - 275
  • [7] Shape coexistence in 66Se
    Elekes, Z.
    Panin, V.
    Rodriguez, T. R.
    Sieja, K.
    Ahn, D. S.
    Al-Adili, A.
    Baba, H.
    Stefanescu, A. I.
    Cook, K. J.
    Dosa, Cs.
    Fukuda, N.
    Gao, J.
    Gibelin, J.
    Hahn, K. I.
    Halasz, Z.
    Huang, S. W.
    Isobe, T.
    Juhasz, M. M.
    Kim, D.
    Kobayashi, T.
    Kondo, Y.
    Korkulu, Z.
    Kurihara, A.
    Kuti, I.
    Miki, H.
    Miki, K.
    Motobayashi, T.
    Otsu, H.
    Saastamoinen, A.
    Sasano, M.
    Sato, H.
    Shimada, T.
    Shimizu, Y.
    Sobotka, L. G.
    Stefanescu, I.
    Stuhl, L.
    Suzuki, H.
    Takeda, H.
    Togano, Y.
    Tomai, T.
    Trache, L.
    Tudor, D.
    Uesaka, T.
    Utsuki, Y.
    Wang, H.
    Yasuda, A.
    Yoneda, K.
    Yoshitome, Y.
    PHYSICS LETTERS B, 2023, 844
  • [8] Shape Coexistence in Isotopes from Oxygen to Calcium
    In, Eun Jin
    Kim, Youngman
    Papakonstantinou, Panagiota
    Hong, Seung-Woo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (11) : 966 - 970
  • [9] Shape coexistence in neutron-rich nuclei
    Gade, A.
    Liddick, S. N.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2016, 43 (02)
  • [10] Shape evolution and shape coexistence in even-even Mo isotopic chain
    El Bassem, Y.
    El Adri, M.
    El Batoul, A.
    Oulne, M.
    NUCLEAR PHYSICS A, 2024, 1043