A polydopamine-modified garnet-based polymer-in-ceramic hybrid solid electrolyte membrane for high-safety lithium metal batteries

被引:32
作者
Mengesha, Tadesu Hailu [1 ,2 ]
Beshahwured, Shimelis Lemma [1 ,2 ,3 ]
Wu, Yi-Shiuan [1 ]
Wu, She-Huang [4 ]
Jose, Rajan [5 ]
Yang, Chun-Chen [1 ,2 ,6 ,7 ]
机构
[1] Ming Chi Univ Technol, Battery Res Ctr Green Energy, New Taipei City 24301, Taiwan
[2] Ming Chi Univ Technol, Dept Chem Engn, New Taipei City 24301, Taiwan
[3] Adama Sci & Technol Univ, Dept Mat Sci & Engn, Adama, Ethiopia
[4] Natl Taiwan Univ Sci & Technol, Grad Inst Sci & Technol, 43 Sec 4,Keelung Rd, Taipei 106, Taiwan
[5] Univ Malaysia Pahang, Fac Ind Sci & Technol, Nanostruct Renewable Energy Mat Lab, Kuantan 26300, Malaysia
[6] Chang Gung Univ, Dept Chem & Mat Engn, Taoyuan City 333, Taiwan
[7] Chang Gung Univ, Green Technol Res Ctr, Taoyuan City 333, Taiwan
关键词
Polydopamine; PDA@LLZAO interconnected filler; Polymer-in-ceramic structure; High-energy cathode material; ASSLMB; CYCLING STABILITY; CATHODE MATERIAL; IONIC LIQUID; LI7LA3ZR2O12;
D O I
10.1016/j.cej.2022.139340
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Composite solid electrolyte (CSE) membranes combining the attractive properties of ceramic and polymer-based electrolytes have emerged as preferred electrolytes for all-solid-state lithium metal batteries (ASSLMBs). In this study, we used solution-casting to prepare a CSE membrane from a suspension of polydopamine (PDA)-modified Li6.28La3Zr2Al0.24O12 (LLZAO) filler (PDA@LLZAO), poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and succinonitrile (SN) as the middle layer and a matrix of PVDF-HFP, LiTFSI, and SN as both the top and bottom layers. The presence of PDA on the surface of LLZAO enabled the filler to percolate well within the polymer matrix. Consequently, a membrane based on PDA@LLZAO (CSE1) exhibited high ionic conductivity (4.01 x 10(-4) S cm(-1)), a high lithium transference number (ca. 0.76), high tensile strength (29.09 MPa), and a stable electrochemical window (ca. 5.01 V vs Li/Li+) relative to those properties of a counterpart membrane (CSE0) having the same constituents as CSE1, but an unmodified LLZAO filler. The interfacial stability developed by the synergetic effect of the CSE1 membrane and Li metal anode enhanced the corresponding Li plating/stripping performance (2000 h) and critical current density (2.0 mA cm(-2)). Benefiting from this stable interfacial contact, an Al2O3@NCM811/CSE1/Li coin-type cell provided a discharge specific capacity of 136.46 mAh/g at a rate of 0.5C after 300 cycles, with a capacity retention of 86.22 % and a average coulombic efficiency of 99.16 % at 25 degrees C. Hence, our proposed strategy for preparing CSEs appears to be promising for use in ASSLMB applications.
引用
收藏
页数:18
相关论文
共 56 条
  • [11] Toward High-Performance Li Metal Anode via Difunctional Protecting Layer
    Gu, Jinlei
    Shen, Chao
    Fang, Zhao
    Yu, Juan
    Zheng, Yong
    Tian, Zhanyuan
    Shao, Le
    Li, Xin
    Xie, Keyu
    [J]. FRONTIERS IN CHEMISTRY, 2019, 7
  • [12] Asymmetric Structure Design of Electrolytes with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries
    Guo, Huan-Liang
    Sun, Hui
    Jiang, Zhuo-Liang
    Hu, Jian-Yong
    Luo, Cong-Shan
    Gao, Meng-Yang
    Cheng, Jing-Yang
    Shi, Wen-Ke
    Zhou, Hong-Jun
    Sun, Shi-Gang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (50) : 46783 - 46791
  • [13] A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery
    Guo, Huan-Liang
    Sun, Hui
    Jiang, Zhuo-Liang
    Luo, Cong-Shan
    Gao, Meng-Yang
    Wei, Mo-Han
    Hu, Jian-Yong
    Shi, Wen-Ke
    Cheng, Jing-Yang
    Zhou, Hong-Jun
    [J]. JOURNAL OF MATERIALS SCIENCE, 2019, 54 (06) : 4874 - 4883
  • [14] Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries
    He, Zijian
    Chen, Long
    Zhang, Bochen
    Liu, Yongchang
    Fan, Li-Zhen
    [J]. JOURNAL OF POWER SOURCES, 2018, 392 : 232 - 238
  • [15] Facile Dry Coating Method of High-Nickel Cathode Material by Nanostructured Fumed Alumina (Al2O3) Improving the Performance of Lithium-Ion Batteries
    Herzog, Marcel J.
    Gauquelin, Nicolas
    Esken, Daniel
    Verbeeck, Johan
    Janek, Juergen
    [J]. ENERGY TECHNOLOGY, 2021, 9 (04)
  • [16] Improving the Structure and Cycling Stability of Ni-Rich Layered Cathodes by Dual Modification of Yttrium Doping and Surface Coating
    Huang, Yan
    Cao, Shuang
    Xie, Xin
    Wu, Chao
    Jamil, Sidra
    Zhao, Qinglan
    Chang, Baobao
    Wang, Ying
    Wang, Xianyou
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) : 19483 - 19494
  • [17] A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties
    Huang, Zeya
    Pang, Wanying
    Liang, Peng
    Jin, Zhehui
    Grundish, Nicholas
    Li, Yutao
    Wang, Chang-An
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) : 16425 - 16436
  • [18] Polydopamine-Coated Garnet Particles Homogeneously Distributed in Poly(propylene carbonate) for the Conductive and Stable Membrane Electrolytes of Solid Lithium Batteries
    Jia, Mengyang
    Zhao, Ning
    Bi, Zhijie
    Fu, Zhengqian
    Xu, Fangfang
    Shi, Chuan
    Guo, Xiangxin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (41) : 46162 - 46169
  • [19] High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery
    Jie, Jing
    Liu, Yulong
    Cong, Lina
    Zhang, Bohao
    Lu, Wei
    Zhang, Xinming
    Liu, Jun
    Xie, Haiming
    Sun, Liqun
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2020, 49 : 80 - 88
  • [20] Hybrid electrolytes for lithium metal batteries
    Keller, Marlou
    Varzi, Alberto
    Passerini, Stefano
    [J]. JOURNAL OF POWER SOURCES, 2018, 392 : 206 - 225