A polydopamine-modified garnet-based polymer-in-ceramic hybrid solid electrolyte membrane for high-safety lithium metal batteries

被引:31
|
作者
Mengesha, Tadesu Hailu [1 ,2 ]
Beshahwured, Shimelis Lemma [1 ,2 ,3 ]
Wu, Yi-Shiuan [1 ]
Wu, She-Huang [4 ]
Jose, Rajan [5 ]
Yang, Chun-Chen [1 ,2 ,6 ,7 ]
机构
[1] Ming Chi Univ Technol, Battery Res Ctr Green Energy, New Taipei City 24301, Taiwan
[2] Ming Chi Univ Technol, Dept Chem Engn, New Taipei City 24301, Taiwan
[3] Adama Sci & Technol Univ, Dept Mat Sci & Engn, Adama, Ethiopia
[4] Natl Taiwan Univ Sci & Technol, Grad Inst Sci & Technol, 43 Sec 4,Keelung Rd, Taipei 106, Taiwan
[5] Univ Malaysia Pahang, Fac Ind Sci & Technol, Nanostruct Renewable Energy Mat Lab, Kuantan 26300, Malaysia
[6] Chang Gung Univ, Dept Chem & Mat Engn, Taoyuan City 333, Taiwan
[7] Chang Gung Univ, Green Technol Res Ctr, Taoyuan City 333, Taiwan
关键词
Polydopamine; PDA@LLZAO interconnected filler; Polymer-in-ceramic structure; High-energy cathode material; ASSLMB; CYCLING STABILITY; CATHODE MATERIAL; IONIC LIQUID; LI7LA3ZR2O12;
D O I
10.1016/j.cej.2022.139340
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Composite solid electrolyte (CSE) membranes combining the attractive properties of ceramic and polymer-based electrolytes have emerged as preferred electrolytes for all-solid-state lithium metal batteries (ASSLMBs). In this study, we used solution-casting to prepare a CSE membrane from a suspension of polydopamine (PDA)-modified Li6.28La3Zr2Al0.24O12 (LLZAO) filler (PDA@LLZAO), poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and succinonitrile (SN) as the middle layer and a matrix of PVDF-HFP, LiTFSI, and SN as both the top and bottom layers. The presence of PDA on the surface of LLZAO enabled the filler to percolate well within the polymer matrix. Consequently, a membrane based on PDA@LLZAO (CSE1) exhibited high ionic conductivity (4.01 x 10(-4) S cm(-1)), a high lithium transference number (ca. 0.76), high tensile strength (29.09 MPa), and a stable electrochemical window (ca. 5.01 V vs Li/Li+) relative to those properties of a counterpart membrane (CSE0) having the same constituents as CSE1, but an unmodified LLZAO filler. The interfacial stability developed by the synergetic effect of the CSE1 membrane and Li metal anode enhanced the corresponding Li plating/stripping performance (2000 h) and critical current density (2.0 mA cm(-2)). Benefiting from this stable interfacial contact, an Al2O3@NCM811/CSE1/Li coin-type cell provided a discharge specific capacity of 136.46 mAh/g at a rate of 0.5C after 300 cycles, with a capacity retention of 86.22 % and a average coulombic efficiency of 99.16 % at 25 degrees C. Hence, our proposed strategy for preparing CSEs appears to be promising for use in ASSLMB applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bio-Inspired Polydopamine-Modified ZIF-90-Supported Gel Polymer Electrolyte for High-Safety Lithium Metal Batteries
    Wang, Dongyun
    Jin, Biyu
    Yao, Xinyu
    Huang, Jiao
    Ren, Yongyuan
    Xu, Xiao
    Han, Xiao
    Li, Fanqun
    Gao, Feng
    Zhan, Xiaoli
    Zhang, Qinghua
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11146 - 11156
  • [2] Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries
    Jiang, Hao
    Wu, Yueyue
    Ma, Jian
    Liu, Yongchao
    Wang, Lulu
    Yao, Xin
    Xiang, Hongfa
    JOURNAL OF MEMBRANE SCIENCE, 2021, 640
  • [3] Flexible high Li+ conductive lithium garnet-based dry solid polymer electrolyte membrane with enhanced electrochemical performance for lithium metal batteries
    Karthik, K.
    Murugan, Ramaswamy
    IONICS, 2019, 25 (10) : 4703 - 4711
  • [4] Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries
    Kim, Jae-Kwang
    MATERIALS LETTERS, 2017, 187 : 40 - 43
  • [5] In situ-polymerized lithium salt as a polymer electrolyte for high-safety lithium metal batteries
    Zhang, Shenghang
    Sun, Fu
    Du, Xiaofan
    Zhang, Xiaohu
    Huang, Lang
    Ma, Jun
    Dong, Shanmu
    Hilger, Andre
    Manke, Ingo
    Li, Longshan
    Xie, Bin
    Li, Jiedong
    Hu, Zhiwei
    Komarek, Alexander C.
    Lin, Hong-Ji
    Kuo, Chang-Yang
    Chen, Chien-Te
    Han, Pengxian
    Xu, Gaojie
    Cui, Zili
    Cui, Guanglei
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (06) : 2591 - 2602
  • [6] PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"
    Chen, Long
    Li, Yutao
    Li, Shuai-Peng
    Fan, Li-Zhen
    Nan, Ce-Wen
    Goodenough, John B.
    NANO ENERGY, 2018, 46 : 176 - 184
  • [7] Low-cost and high-safety montmorillonite-based solid electrolyte for lithium metal batteries
    Zhou, Shusen
    Han, Zhangkuo
    Wang, Xiaofei
    Liu, Xin
    Hao, Huiying
    Xing, Jie
    Dong, Jingjing
    Liu, Hao
    Liao, Libing
    APPLIED CLAY SCIENCE, 2024, 251
  • [8] A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries
    Wang, Shi
    Li, Qingyuan
    Bai, Minglei
    He, Jixin
    Liu, Chongyang
    Li, Zengxi
    Liu, Xiangfeng
    Lai, Wen-yong
    Zhang, Liaoyun
    ELECTROCHIMICA ACTA, 2020, 353
  • [9] High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries
    Hu, Qilin
    Sun, Zhetao
    Nie, Lu
    Chen, Shaojie
    Yu, Jiameng
    Liu, Wei
    MATERIALS TODAY ENERGY, 2022, 27
  • [10] A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries
    Pan, Kecheng
    Zhang, Lan
    Qian, Weiwei
    Wu, Xiangkun
    Dong, Kun
    Zhang, Haitao
    Zhang, Suojiang
    ADVANCED MATERIALS, 2020, 32 (17)