On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class

被引:8
作者
Wang, Chao [1 ]
Wang, Yuxi [2 ]
Zhang, Ping [3 ,4 ,5 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Prandtl system; Littlewood-Paley theory; Gevrey energy estimate; ZERO-VISCOSITY LIMIT; BOUNDARY-LAYER; WELL-POSEDNESS; ANALYTIC SOLUTIONS; SPECTRAL INSTABILITY; ILL-POSEDNESS; EXISTENCE; EQUATIONS; REGULARITY;
D O I
10.1016/j.aim.2024.109517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by [8], we prove the global existence and large time behavior of small solutions to 2-D Prandtl system for data with Gevrey 2 regularity in the x variable and Sobolev regularity in the y variable. In particular, we extend the global well-posedness result in [26] for 2-D Prandtl system with analytic data to data with optimal Gevery regularity in the sense of [11]. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:69
相关论文
共 34 条
[21]   Local-in-Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods [J].
Masmoudi, Nader ;
Wong, Tak Kwong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (10) :1683-1741
[22]  
Nguyen T.T., 2015, ANALYSIS, V35, P343, DOI DOI 10.1515/ANLY-2015-0001
[23]  
OLEINIK OA, 1966, PMM-J APPL MATH MEC+, V30, P951
[24]  
Oleinik V.N., 1999, APPL MATH MATH COMPU, V15
[25]   Global Existence and the Decay of Solutions to the Prandtl System with Small Analytic Data [J].
Paicu, Marius ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) :403-446
[26]   On the hydrostatic approximation of the Navier-Stokes equations in a thin strip [J].
Paicu, Marius ;
Zhang, Ping ;
Zhang, Zhifei .
ADVANCES IN MATHEMATICS, 2020, 372
[27]   GLOBAL WELL-POSEDNESS FOR 3D NAVIER-STOKES EQUATIONS WITH ILL-PREPARED INITIAL DATA [J].
Paicu, Marius ;
Zhang, Zhifei .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (02) :395-411
[28]   GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS WITH SOME CLASSES OF LARGE INITIAL DATA [J].
Paicu, Marius ;
Zhang, Zhifei .
ANALYSIS & PDE, 2011, 4 (01) :95-113
[29]  
Prandtl L., 1904, 3 INT MATH K HEID, P484
[30]   Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations [J].
Sammartino, M ;
Caflisch, RE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) :433-461