On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class

被引:8
作者
Wang, Chao [1 ]
Wang, Yuxi [2 ]
Zhang, Ping [3 ,4 ,5 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Prandtl system; Littlewood-Paley theory; Gevrey energy estimate; ZERO-VISCOSITY LIMIT; BOUNDARY-LAYER; WELL-POSEDNESS; ANALYTIC SOLUTIONS; SPECTRAL INSTABILITY; ILL-POSEDNESS; EXISTENCE; EQUATIONS; REGULARITY;
D O I
10.1016/j.aim.2024.109517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by [8], we prove the global existence and large time behavior of small solutions to 2-D Prandtl system for data with Gevrey 2 regularity in the x variable and Sobolev regularity in the y variable. In particular, we extend the global well-posedness result in [26] for 2-D Prandtl system with analytic data to data with optimal Gevery regularity in the sense of [11]. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:69
相关论文
共 34 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Chemin J-Y., 2004, ACTES JOURNEES MATH
[5]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012
[6]   Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow [J].
Chen, Dongxiang ;
Wang, Yuxi ;
Zhang, Zhifei .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :1119-1142
[7]   SEPARATION FOR THE STATIONARY PRANDTL EQUATION [J].
Dalibard, Anne-Laure ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 130 (01) :187-297
[8]   Well-Posedness of the Prandtl Equations Without Any Structural Assumption [J].
Dietert, Helge ;
Gerard-Varet, David .
ANNALS OF PDE, 2019, 5 (01)
[9]  
Drazin P.G., 2004, Hydrodynamic Stability
[10]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88