PtOx Schottky Contacts on Degenerately Doped (2-01)β-Ga2O3 Substrates

被引:0
作者
Spencer, Joseph A. [1 ,2 ]
Jacobs, Alan G. [1 ]
Hobart, Karl D. [1 ]
Koehler, Andrew D. [1 ]
Anderson, Travis J. [1 ]
Zhang, Yuhao [2 ]
Tadjer, Marko J. [1 ]
机构
[1] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] Virginia Polytech Inst & State Univ, Ctr Power Elect Syst CPES, Blacksburg, VA 24060 USA
关键词
Gallium oxide; platinum oxide; barrier height; degenerate doping; Schottky contact; BARRIER DIODES;
D O I
10.1007/s11664-024-10966-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Platinum oxide (PtOx) Schottky contacts on degenerately doped beta-Ga2O3 substrates show an increased barrier height of 85% and 64% when compared to nickel and platinum Schottky contacts, respectively. At low reverse voltage bias, the reverse leakage current of the PtOx Schottky barrier diodes was approximately 5-6 orders of magnitude lower than the reference evaporated Ni and Pt Schottky contacts. PtOx Schottky contacts were deposited using reactive sputtering on highly doped (8 x 10(18) cm(-3)) (2<overline>01) beta-Ga2O3:Sn substrates grown by the edge-defined film-fed growth (EFG) method. All Schottky metals were capped with evaporated Au. Capacitance-voltage and temperature-dependent current-voltage measurements were performed in order to extract the barrier height of the PtOx Schottky contact. Analysis of the diode ideality factors reveal that the PtOx Schottky contacts on highly doped beta-Ga2O3 do not follow the thermionic field emission model and are impacted by inhomogeneous barrier height distribution. This work highlights the significance of PtOx Schottky contacts for beta-Ga2O3-based power devices as a means for reducing leakage current. This work also holds relevance for low-voltage applications, where Schottky contacts for degenerately doped semiconductors can enable new electronic device applications.
引用
收藏
页码:2798 / 2805
页数:8
相关论文
共 37 条
[1]   Vertical Ga2O3 Schottky Barrier Diodes With Small-Angle Beveled Field Plates: A Baliga's Figure-of-Merit of 0.6 GW/cm2 [J].
Allen, Noah ;
Xiao, Ming ;
Yan, Xiaodong ;
Sasaki, Kohei ;
Tadjer, Marko J. ;
Ma, Jiahui ;
Zhang, Ruizhe ;
Wang, Han ;
Zhang, Yuhao .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (09) :1399-1402
[2]   6 kV/3.4 mΩ.cm2 Vertical β-Ga2O3 Schottky Barrier Diode With BV2/Ron,sp Performance Exceeding 1-D Unipolar Limit of GaN and SiC [J].
Dong, Pengfei ;
Zhang, Jincheng ;
Yan, Qinglong ;
Liu, Zhihong ;
Ma, Peijun ;
Zhou, Hong ;
Hao, Yue .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (05) :765-768
[3]   UNIVERSALITY ASPECTS OF METAL-NONMETAL TRANSITION IN CONDENSED MEDIA [J].
EDWARDS, PP ;
SIENKO, MJ .
PHYSICAL REVIEW B, 1978, 17 (06) :2575-2581
[4]  
Farzana E., 2023, 65 ELECT MAT C
[5]   Vertical PtOx/Pt/β-Ga2O3 Schottky diodes with high permittivity dielectric field plate for low leakage and high breakdown voltage [J].
Farzana, Esmat ;
Roy, Saurav ;
Hendricks, Nolan S. ;
Krishnamoorthy, Sriram ;
Speck, James S. .
APPLIED PHYSICS LETTERS, 2023, 123 (19)
[6]   Oxidized metal Schottky contact with high-κ dielectric field plate for low-loss high-power vertical β-Ga2O3 Schottky diodes [J].
Farzana, Esmat ;
Bhattacharyya, Arkka ;
Hendricks, Nolan S. ;
Itoh, Takeki ;
Krishnamoorthy, Sriram ;
Speck, James S. .
APL MATERIALS, 2022, 10 (11)
[7]   Raman scattering in heavily donor doped β-Ga2O3 [J].
Fiedler, A. ;
Ramsteiner, M. ;
Galazka, Z. ;
Irmscher, K. .
APPLIED PHYSICS LETTERS, 2020, 117 (15)
[8]   Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates [J].
Higashiwaki, Masataka ;
Sasaki, Kohei ;
Kuramata, Akito ;
Masui, Takekazu ;
Yamakoshi, Shigenobu .
APPLIED PHYSICS LETTERS, 2012, 100 (01)
[9]   Oxidized Metal Schottky Contacts on (010) β-Ga2O3 [J].
Hou, Caixia ;
Gazoni, Rodrigo M. ;
Reeves, Roger J. ;
Allen, Martin W. .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (02) :337-340
[10]   Observation of impurity band conduction and variable range hopping in heavily doped (010) β-Ga2O3 [J].
Kabilova, Zumrad ;
Kurdak, Cagliyan ;
Peterson, Rebecca L. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (03)