Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities

被引:4
作者
Foltyn-Dumitru, Martha [1 ,2 ]
Kessler, Tobias [3 ,4 ,5 ]
Sahm, Felix [6 ]
Wick, Wolfgang [3 ,4 ,5 ]
Heiland, Sabine [1 ]
Bendszus, Martin [1 ]
Vollmuth, Philipp [1 ,2 ]
Schell, Marianne [1 ,2 ]
机构
[1] Heidelberg Univ Hosp, Dept Neuroradiol, Neuenheimer Feld 400, D-69120 Heidelberg, Germany
[2] Heidelberg Univ Hosp, Sect Computat Neuroimaging, Dept Neuroradiol, Heidelberg, Germany
[3] Heidelberg Univ, Heidelberg Univ Hosp, Dept Neurol, Heidelberg, Germany
[4] Heidelberg Univ, Heidelberg Univ Hosp, Neurooncol Program, Heidelberg, Germany
[5] German Canc Res Ctr, Clin Cooperat Unit Neurooncol, Heidelberg, Germany
[6] Heidelberg Univ Hosp, Dept Neuropathol, Heidelberg, Germany
关键词
diffusion; glioblastoma; machine learning; perfusion; prognostic biomarker; CEREBRAL BLOOD-VOLUME; CENTRAL-NERVOUS-SYSTEM; PREDICTING SURVIVAL; MRI; BRAIN; CLASSIFICATION; BEVACIZUMAB; GLIOMAS; FLOW; CBV;
D O I
10.1093/neuonc/noad259
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival.Methods A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership.Results Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P <= 0.004 each).Conclusions Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.
引用
收藏
页码:1099 / 1108
页数:10
相关论文
共 50 条
[1]  
[Anonymous], 2022, TIDYMODELS EASILY IN
[2]  
[Anonymous], 2022, CLUSTER FINDING GROU
[3]  
[Anonymous], 2023, FPC FLEXIBLE PROCEDU
[4]  
[Anonymous], 2022, BHM BIOMARKER THRESH
[5]  
[Anonymous], 2020, Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles
[6]   Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images [J].
Anzalone, Nicoletta ;
Castellano, Antonella ;
Cadioli, Marcello ;
Conte, Gian Marco ;
Cuccarini, Valeria ;
Bizzi, Alberto ;
Grimaldi, Marco ;
Costa, Antonella ;
Grillea, Giovanni ;
Vitali, Paolo ;
Aquino, Domenico ;
Terreni, Maria Rosa ;
Torri, Valter ;
Erickson, Bradley J. ;
Caulo, Massimo .
RADIOLOGY, 2018, 287 (03) :933-943
[7]   Updates in prognostic markers for gliomas [J].
Aquilanti, Elisa ;
Miller, Julie ;
Santagata, Sandro ;
Cahill, Daniel P. ;
Brastianos, Priscilla K. .
NEURO-ONCOLOGY, 2018, 20 :17-26
[8]   Clinical parameters outweigh diffusion- and perfusion-derived MRI parameters in predicting survival in newly diagnosed glioblastoma [J].
Burth, Sina ;
Kickingereder, Philipp ;
Eidel, Oliver ;
Tichy, Diana ;
Bonekamp, David ;
Weberling, Lukas ;
Wick, Antje ;
Loew, Sarah ;
Hertenstein, Anne ;
Nowosielski, Martha ;
Schlemmer, Heinz-Peter ;
Wick, Wolfgang ;
Bendszus, Martin ;
Radbruch, Alexander .
NEURO-ONCOLOGY, 2016, 18 (12) :1673-1679
[9]   DNA methylation-based classification of central nervous system tumours [J].
Capper, David ;
Jones, David T. W. ;
Sill, Martin ;
Hovestadt, Volker ;
Schrimpf, Daniel ;
Sturm, Dominik ;
Koelsche, Christian ;
Sahm, Felix ;
Chavez, Lukas ;
Reuss, David E. ;
Kratz, Annekathrin ;
Wefers, Annika K. ;
Huang, Kristin ;
Pajtler, Kristian W. ;
Schweizer, Leonille ;
Stichel, Damian ;
Olar, Adriana ;
Engel, Nils W. ;
Lindenberg, Kerstin ;
Harter, Patrick N. ;
Braczynski, Anne K. ;
Plate, Karl H. ;
Dohmen, Hildegard ;
Garvalov, Boyan K. ;
Coras, Roland ;
Hoelsken, Annett ;
Hewer, Ekkehard ;
Bewerunge-Hudler, Melanie ;
Schick, Matthias ;
Fischer, Roger ;
Beschorner, Rudi ;
Schittenhelm, Jens ;
Staszewski, Ori ;
Wani, Khalida ;
Varlet, Pascale ;
Pages, Melanie ;
Temming, Petra ;
Lohmann, Dietmar ;
Selt, Florian ;
Witt, Hendrik ;
Milde, Till ;
Witt, Olaf ;
Aronica, Eleonora ;
Giangaspero, Felice ;
Rushing, Elisabeth ;
Scheurlen, Wolfram ;
Geisenberger, Christoph ;
Rodriguez, Fausto J. ;
Becker, Albert ;
Preusser, Matthias .
NATURE, 2018, 555 (7697) :469-+
[10]   A hierarchical Bayes model for biomarker subset effects in clinical trials [J].
Chen, Bingshu E. ;
Jiang, Wenyu ;
Tu, Dongsheng .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 :324-334