共 50 条
Cage occupancies of CH4, CO2, and Xe hydrates: Mean field theory and grandcanonical Monte Carlo simulations
被引:2
|作者:
Tanaka, Hideki
[1
,2
]
Matsumoto, Masakazu
[2
]
Yagasaki, Takuma
[3
]
机构:
[1] Toyota Phys & Chem Res Inst, Nagakute 4801192, Japan
[2] Okayama Univ, Res Inst Interdisciplinary Sci, Okayama 7008530, Japan
[3] Osaka Univ, Grad Sch Engn Sci, Div Chem Engn, Osaka 5608531, Japan
关键词:
PRESSURE PHASE-EQUILIBRIUM;
THERMODYNAMIC STABILITY;
HYDROGEN-STORAGE;
METHANE HYDRATE;
CLATHRATE;
PREDICTION;
WATER;
D O I:
10.1063/5.0188679
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We propose a statistical mechanical theory for the thermodynamic stability of clathrate hydrates, considering the influence of the guest-guest interaction on the occupancies of the cages. A mean field approximation is developed to examine the magnitude of the influence. Our new method works remarkably well, which is manifested by two sorts of grandcanonical Monte Carlo (GCMC) simulations. One is full GCMC, and the other is designed in the present study for clathrate hydrates, called lattice-GCMC, in which each guest can be adsorbed at one of the centers of the cage. In the latter simulation, only the guest-guest interaction is explicitly treated, incorporating the host-guest interaction into the free energy of the cage occupation without other guests. Critical phenomena for guest species, such as large density fluctuations, are observed when the temperature is low or the guest-guest interaction is strong.
引用
收藏
页数:9
相关论文