Monotone operators and a class of nonlinear elliptic equations on the Sierpinski gasket

被引:0
作者
Verma, Amar Pal [1 ]
Kar, Rasmita [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, Odisha, India
关键词
Sierpinski gasket; nonlinear elliptic partial differential equations; fractal domains; monotone operators; MULTIPLE SOLUTIONS; BROWNIAN-MOTION;
D O I
10.1515/gmj-2023-2056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of solutions for the nonlinear elliptic problem -Delta v - lambda g(1)v + h(1)(v) = f(1) in V \ V-0, v = 0 on V-0, where V is the Sierpinski gasket in RN-1 (N >= 2), V-0 is its boundary (consisting of its N corners) and lambda is an element of R. Here f(1), g(1) : V -> R, h(1) : R -> R are the maps satisfying suitable hypotheses.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 28 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   TRANSITION DENSITIES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) :307-330
[3]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[4]   Nonlinear problems on the Sierpinski gasket [J].
Bisci, Giovanni Molica ;
Repovs, Dusan ;
Servadei, Raffaella .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) :883-895
[5]  
Bisci GM, 2015, P AM MATH SOC, V143, P2959, DOI 10.1090/s0002-9939-2015-12475-6
[6]  
Breckner B. E., 2013, MATHEMATICA, V55, P142
[7]   A short note on harmonic functions and zero divisors on the Sierpinski fractal [J].
Breckner, Brigitte E. .
ARCHIV DER MATHEMATIK, 2016, 106 (02) :183-188
[8]   Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket [J].
Breckner, Brigitte E. ;
Varga, Csaba .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) :842-861
[9]   A note on gradient-type systems on fractals [J].
Breckner, Brigitte E. ;
Varga, Csaba .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :142-152
[10]   INFINITELY MANY SOLUTIONS FOR THE DIRICHLET PROBLEM ON THE SIERPINSKI GASKET [J].
Breckner, Brigitte E. ;
Radulescu, Vicentiu D. ;
Varga, Csaba .
ANALYSIS AND APPLICATIONS, 2011, 9 (03) :235-248