Anomalous Non-Equilibrium State Response of Long-Wavelength HgCdTe Infrared Detectors

被引:22
作者
Dai, Fuxing [1 ,2 ]
Wang, Fang [1 ]
Ge, Haonan [1 ]
Xie, Runzhang [1 ]
Jiang, Ruiqi [1 ]
Shi, Hangrui [1 ,2 ]
Liu, Han [1 ]
Hu, Gangjian [3 ]
Shen, Liang [3 ]
Li, Tianxin [1 ]
Hu, Weida [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jilin Univ, Coll Elect Sci & Engn, Int Ctr Future Sci, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
关键词
Non-equilibrium states; HgCdTe; longwavelength infrared; laser beam-induced current; BEAM-INDUCED CURRENT; ARRAYS;
D O I
10.1109/LED.2023.3335419
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nowadays, long-wavelength infrared (LWIR) HgCdTe infrared detectors are developing towards high operating temperatures. There remains a lack of knowledge on the operational mechanism of LWIR HgCdTe at room temperature. This letter conducted an in-depth study on the anomalous non-equilibrium state of LWIR HgCdTe at room temperature. Through laser beam-induced current (LBIC) photocurrent mapping testing, it was found that there are high-energy non-equilibrium states. The junction formed by non-equilibrium states has a minority carrier diffusion length of up to 30 mu m through LBIC line profile formula fitting and a carrier lifetime of up to 45 ns through time-resolved photoluminescence. It indicated that high-energy photons can excite electrons in LWIR HgCdTe to transition to a stable high-energy state and participate in the carrier transport process.
引用
收藏
页码:16 / 19
页数:4
相关论文
共 22 条
[1]   Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization [J].
Bhan, R. K. ;
Dhar, V. .
OPTO-ELECTRONICS REVIEW, 2019, 27 (02) :174-193
[2]   ELECTRICAL DOPING OF HGCDTE BY ION-IMPLANTATION AND HEAT-TREATMENT [J].
DESTEFANIS, GL .
JOURNAL OF CRYSTAL GROWTH, 1988, 86 (1-4) :700-722
[3]  
Ding R., 2020, Infr. Laser Eng., V49
[4]   A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification [J].
Hu, W. D. ;
Chen, X. S. ;
Ye, Z. H. ;
Lu, W. .
APPLIED PHYSICS LETTERS, 2011, 99 (09)
[5]   Dependence of Ion-Implant-Induced LBIC Novel Characteristic on Excitation Intensity for Long-Wavelength HgCdTe-Based Photovoltaic Infrared Detector Pixel Arrays [J].
Hu, Wei-Da ;
Chen, Xiao-Shuang ;
Ye, Zhen-Hua ;
Feng, A-Li ;
Yin, Fei ;
Zhang, Bo ;
Liao, Lei ;
Lu, Wei .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (05)
[6]   128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk [J].
Hu, Weida ;
Ye, Zhenhua ;
Liao, Lei ;
Chen, Honglei ;
Chen, Lu ;
Ding, Ruijun ;
He, Li ;
Chen, Xiaoshuang ;
Lu, Wei .
OPTICS LETTERS, 2014, 39 (17) :5184-5187
[7]  
Jiao H., Sci. Adv., V8
[8]   New insights into the ultimate performance of HgCdTe photodiodes [J].
Kopytko, M. ;
Rogalski, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2022, 339
[9]   High-Operating Temperature HgCdTe: A Vision for the Near Future [J].
Lee, D. ;
Carmody, M. ;
Piquette, E. ;
Dreiske, P. ;
Chen, A. ;
Yulius, A. ;
Edwall, D. ;
Bhargava, S. ;
Zandian, M. ;
Tennant, W. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (09) :4587-4595
[10]   Development of long-wavelength infrared detector and its space-based application requirements [J].
Liu, Junku ;
Xiao, Lin ;
Liu, Yang ;
Cao, Longfei ;
Shen, Zhengkun .
CHINESE PHYSICS B, 2019, 28 (02)