High-dimensional frequency conversion in a hot atomic system

被引:3
作者
Zhang, Weihang [1 ,2 ]
Ye, Yinghao [1 ,2 ,3 ,4 ]
Zeng, Lei [1 ,2 ]
Li, Enze [1 ,2 ]
Peng, Jingyuan [1 ,2 ]
Ding, Dongsheng [1 ,2 ]
Shi, Baosen [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[3] Hefei Normal Univ, Inst Quantum Control & Quantum Informat, Hefei 230601, Peoples R China
[4] Hefei Normal Univ, Sch Phys & Mat Engn, Hefei 230601, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high dimension; frequency conversion; four-wave mixing; perfect optical vortex; ORBITAL ANGULAR-MOMENTUM; OPTICAL COMMUNICATIONS; PERFECT; GENERATION; LIGHT;
D O I
10.3788/COL202321.092701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
One of the major difficulties in realizing a high-dimensional frequency converter for conventional optical vortex (COV) modes stems from the difference in ring diameter of the COV modes with different topological charge numbers l. Here, we implement a high-dimensional frequency converter for perfect optical vortex (POV) modes with invariant sizes by way of the four-wave mixing (FWM) process using Bessel-Gaussian beams instead of Laguerre-Gaussian beams. The measured conversion efficiency from 1530 to 795 nm is independent of l at least in subspace l is an element of{-6, . . . , 6}, and the achieved conversion fidelities for two-dimensional (2D) superposed POV states exceed 97%. We further realize the frequency conversion of 3D, 5D, and 7D superposition states with fidelities as high as 96.70%, 89.16%, and 88.68%, respectively. The proposed scheme is implemented in hot atomic vapor. It is also compatible with the cold atomic system and may find applications in high-capacity and long-distance quantum communication.
引用
收藏
页数:5
相关论文
共 50 条
[31]   High-dimensional vortex beam encoding/decoding for high-speed free-space optical communication [J].
Liu, Lei ;
Gao, Yesheng ;
Liu, Xingzhao .
OPTICS COMMUNICATIONS, 2019, 452 :40-47
[32]   Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud [J].
Liu, Shaoxing ;
Lai, Xuanying ;
Yang, Ce ;
Chen, J. F. .
CHINESE PHYSICS LETTERS, 2021, 38 (08)
[33]   Nonlinear frequency conversion of nondiffracting modes via nondegenerate four-wave mixing in atomic vapor [J].
Verma, Onkar N. ;
Kant, Niti .
PHYSICAL REVIEW A, 2024, 109 (03)
[34]   Efficient High-Dimensional Quantum Key Distribution with Hybrid Encoding [J].
Jo, Yonggi ;
Park, Hee Su ;
Lee, Seung-Woo ;
Son, Wonmin .
ENTROPY, 2019, 21 (01)
[35]   Chip-Based High-Dimensional Optical Neural Network [J].
Wang, Xinyu ;
Xie, Peng ;
Chen, Bohan ;
Zhang, Xingcai .
NANO-MICRO LETTERS, 2022, 14 (01)
[36]   How gravitational fluctuations degrade the high-dimensional spatial entanglement [J].
Wu, Haorong ;
Fan, Xilong ;
Chen, Lixiang .
PHYSICAL REVIEW D, 2022, 106 (04)
[37]   Experimental High-Dimensional Einstein-Podolsky-Rosen Steering [J].
Zeng, Qiang ;
Wang, Bo ;
Li, Pengyun ;
Zhang, Xiangdong .
PHYSICAL REVIEW LETTERS, 2018, 120 (03)
[38]   High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges [J].
Cozzolino, Daniele ;
Da Lio, Beatrice ;
Bacco, Davide ;
Oxenlowe, Leif Katsuo .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (12)
[39]   Realising high-dimensional quantum entanglement with orbital angular momentum [J].
McLaren, Melanie G. ;
Roux, Filippus S. ;
Forbes, Andrew .
SOUTH AFRICAN JOURNAL OF SCIENCE, 2015, 111 (1-2)
[40]   High-dimensional orbital angular momentum multiplexing nonlinear holography [J].
Fang, Xinyuan ;
Yang, Haocheng ;
Yao, Wenzhe ;
Wang, Tianxin ;
Zhang, Yong ;
Gu, Min ;
Xiao, Min .
ADVANCED PHOTONICS, 2021, 3 (01)