High-dimensional frequency conversion in a hot atomic system

被引:3
作者
Zhang, Weihang [1 ,2 ]
Ye, Yinghao [1 ,2 ,3 ,4 ]
Zeng, Lei [1 ,2 ]
Li, Enze [1 ,2 ]
Peng, Jingyuan [1 ,2 ]
Ding, Dongsheng [1 ,2 ]
Shi, Baosen [1 ,2 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Peoples R China
[3] Hefei Normal Univ, Inst Quantum Control & Quantum Informat, Hefei 230601, Peoples R China
[4] Hefei Normal Univ, Sch Phys & Mat Engn, Hefei 230601, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high dimension; frequency conversion; four-wave mixing; perfect optical vortex; ORBITAL ANGULAR-MOMENTUM; OPTICAL COMMUNICATIONS; PERFECT; GENERATION; LIGHT;
D O I
10.3788/COL202321.092701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
One of the major difficulties in realizing a high-dimensional frequency converter for conventional optical vortex (COV) modes stems from the difference in ring diameter of the COV modes with different topological charge numbers l. Here, we implement a high-dimensional frequency converter for perfect optical vortex (POV) modes with invariant sizes by way of the four-wave mixing (FWM) process using Bessel-Gaussian beams instead of Laguerre-Gaussian beams. The measured conversion efficiency from 1530 to 795 nm is independent of l at least in subspace l is an element of{-6, . . . , 6}, and the achieved conversion fidelities for two-dimensional (2D) superposed POV states exceed 97%. We further realize the frequency conversion of 3D, 5D, and 7D superposition states with fidelities as high as 96.70%, 89.16%, and 88.68%, respectively. The proposed scheme is implemented in hot atomic vapor. It is also compatible with the cold atomic system and may find applications in high-capacity and long-distance quantum communication.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] High-Fidelity Frequency Converter in High-Dimensional Spaces
    Yuan, Jinpeng
    Wang, Xuewen
    Chen, Gang
    Wang, Lirong
    Xiao, Liantuan
    Jia, Suotang
    LASER & PHOTONICS REVIEWS, 2024, 18 (11)
  • [2] High-dimensional quantum frequency converter
    Liu, Shilong
    Yang, Chen
    Xu, Zhaohuai
    Liu, Shikai
    Li, Yan
    Li, Yinhai
    Zhou, Zhiyuan
    Guo, Guangcan
    Shi, Baosen
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [3] Frequency Conversion of Optical Vortex Arrays Through Four-Wave Mixing in Hot Atomic Gases
    Mendoza-Lopez, L. A.
    Acosta-Montes, J. G.
    Bernal-Orozco, J. A.
    Torres, Y. M.
    Arias-Tellez, N.
    Jauregui, R.
    Sanchez, D. Sahagun
    FRONTIERS IN PHYSICS, 2022, 10
  • [4] High-dimensional maximally entangled photon pairs in parametric down-conversion
    Bernecker, Richard
    Baghdasaryan, Baghdasar
    Fritzsche, Stephan
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [5] Advances in high-dimensional quantum entanglement
    Erhard, Manuel
    Krenn, Mario
    Zeilinger, Anton
    NATURE REVIEWS PHYSICS, 2020, 2 (07) : 365 - 381
  • [6] Quantum teleportation of high-dimensional atomic ensemble states
    Al-Amri, M.
    Evers, Joerg
    Ikram, Manzoor
    Zubairy, M. Suhail
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (09)
  • [7] High-Dimensional Entanglement for Quantum Communication in the Frequency Domain
    Cabrejo-Ponce, Meritxell
    Muniz, Andre Luiz Marques
    Huber, Marcus
    Steinlechner, Fabian
    LASER & PHOTONICS REVIEWS, 2023, 17 (09)
  • [8] Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion
    Qiu, Xiaodong
    Guo, Haoxu
    Chen, Lixiang
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] High-dimensional entanglement between a photon and a multiplexed atomic quantum memory
    Li, C.
    Wu, Y-K
    Chang, W.
    Zhang, S.
    Pu, Y-F
    Jiang, N.
    Duan, L-M
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [10] Classically high-dimensional correlation: simulation of high-dimensional entanglement
    Li, PengYun
    Zhang, Shihao
    Zhang, Xiangdong
    OPTICS EXPRESS, 2018, 26 (24): : 31413 - 31429